Spaces:
Runtime error
Runtime error
File size: 2,705 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import nemo_run as run
from nemo.collections import vlm
def configure_recipe(nodes: int = 1, gpus_per_node: int = 8, pretrain=False, language_model_from_pretrained=None):
"""Configure the recipe"""
if pretrain:
recipe = vlm.llava_next_7b.pretrain_recipe(
dir="./outputs/checkpoints/llava", # Path to store checkpoints
name="llava_pretrain",
num_nodes=nodes,
num_gpus_per_node=gpus_per_node,
language_model_from_pretrained=language_model_from_pretrained,
)
else:
recipe = vlm.llava_next_7b.finetune_recipe(
dir="./outputs/checkpoints/llava", # Path to store checkpoints
name="llava_finetune",
num_nodes=nodes,
num_gpus_per_node=gpus_per_node,
)
recipe.trainer.max_steps = 20
recipe.trainer.val_check_interval = 20
recipe.model.config.freeze_vision_model = True
return recipe
def local_executor_torchrun(nodes: int = 1, devices: int = 8) -> run.LocalExecutor:
# pylint: disable=C0115,C0116
# Env vars for jobs are configured here
env_vars = {}
executor = run.LocalExecutor(ntasks_per_node=devices, launcher="torchrun", env_vars=env_vars)
return executor
def run_pretraining(language_model_from_pretrained=None):
# pylint: disable=C0115,C0116
recipe = configure_recipe(pretrain=True, language_model_from_pretrained=language_model_from_pretrained)
executor = local_executor_torchrun(nodes=recipe.trainer.num_nodes, devices=recipe.trainer.devices)
run.run(recipe, executor=executor)
def run_finetuning():
# pylint: disable=C0115,C0116
recipe = configure_recipe(pretrain=False)
executor = local_executor_torchrun(nodes=recipe.trainer.num_nodes, devices=recipe.trainer.devices)
run.run(recipe, executor=executor)
# This condition is necessary for the script to be compatible with Python's multiprocessing module.
if __name__ == "__main__":
run_pretraining(language_model_from_pretrained='/root/.cache/nemo/models/lmsys/vicuna-7b-v1.5/')
# run_finetuning()
|