Spaces:
Runtime error
Runtime error
File size: 9,810 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import torch
from lightning.pytorch.loggers import WandbLogger
from megatron.core.optimizer import OptimizerConfig
from transformers import AutoProcessor
from nemo import lightning as nl
from nemo.collections import llm, vlm
from nemo.collections.multimodal.data.energon.conversation import MLlamaTemplateConfig
from nemo.collections.vlm import ImageDataConfig
from nemo.collections.vlm.mllama.data.preloaded import MLlamaPreloadedDataModule
from nemo.collections.vlm.mllama.data.task_encoder import LlamaTaskEncoder
from nemo.lightning.pytorch.optim import CosineAnnealingScheduler
from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule
from nemo.utils.exp_manager import TimingCallback
"""
Example:
torchrun --nproc_per_node=8 scripts/vlm/mllama_finetune.py \
--devices=8 --tp=4 --data_type=mock
"""
def main(args):
"""
Main function for setting up and training the MLLama model.
This function prepares the data module, model, training strategy,
logger, checkpointing, and optimizer configuration. It then starts
the training loop using PyTorch Lightning's trainer.
Args:
args (argparse.Namespace): The command-line arguments passed to the script.
"""
# Setting gbs, mbs, and max_steps from arguments
gbs = args.gbs
mbs = args.mbs
max_steps = args.max_steps
num_workers = args.num_workers
# encoder (vision) seq length
# ((img_res / patch_size) ** 2 + cls_token) * num_tiles, = ((560 / 14) ** 2 + 1) * 4 = 6404
seq_length = 6404
decoder_seq_length = 1024 # decoder (llm) seq length
if args.restore_path is not None and args.restore_path.startswith("nemo://"):
model_id = args.restore_path[len("nemo://") :]
else:
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer
processor = AutoProcessor.from_pretrained(model_id)
image_processor = processor.image_processor
tokenizer = AutoTokenizer(model_id)
model_configs = {
"meta-llama/Llama-3.2-11B-Vision": vlm.MLlamaConfig11B,
"meta-llama/Llama-3.2-11B-Vision-Instruct": vlm.MLlamaConfig11BInstruct,
"meta-llama/Llama-3.2-90B-Vision": vlm.MLlamaConfig90B,
"meta-llama/Llama-3.2-90B-Vision-Instruct": vlm.MLlamaConfig90BInstruct,
}
conf = model_configs[model_id]()
if args.use_toy_model:
conf.language_model_config.num_layers = 2
num_workers = 0
if args.data_type == "llava":
# Data configuration
data_config = ImageDataConfig(
image_folder=args.image_folder,
conv_template="mllama",
)
# Data module setup
data = MLlamaPreloadedDataModule(
paths=args.data_path,
data_config=data_config,
seq_length=seq_length,
decoder_seq_length=decoder_seq_length,
global_batch_size=gbs,
micro_batch_size=mbs,
tokenizer=tokenizer,
image_processor=image_processor,
num_workers=num_workers,
)
elif args.data_type == "energon":
# Data configuration
from nemo.collections.multimodal.data.energon import (
EnergonMultiModalDataModule,
ImageToken,
MultiModalSampleConfig,
)
# Configure multimodal samples
config = MultiModalSampleConfig(
image_token=ImageToken(token_str="<image>", token_id=-200),
ignore_place_holder=-100,
conversation_template_config=MLlamaTemplateConfig(),
)
# Initialize the data module
data = EnergonMultiModalDataModule(
path=args.data_path,
tokenizer=tokenizer,
image_processor=image_processor,
seq_length=decoder_seq_length,
micro_batch_size=mbs,
global_batch_size=gbs,
num_workers=num_workers,
multimodal_sample_config=config,
task_encoder=LlamaTaskEncoder(
tokenizer=tokenizer,
image_processor=image_processor,
multimodal_sample_config=config,
),
)
elif args.data_type == "mock":
data = vlm.MLlamaMockDataModule(
seq_length=seq_length,
decoder_seq_length=decoder_seq_length,
global_batch_size=gbs,
micro_batch_size=mbs,
tokenizer=tokenizer,
image_processor=image_processor,
num_workers=num_workers,
)
else:
raise ValueError(f"Data type {args.data_type} not supported")
model = vlm.MLlamaModel(conf, tokenizer=tokenizer)
# Training strategy setup
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=args.tp_size,
pipeline_model_parallel_size=args.pp_size,
encoder_pipeline_model_parallel_size=args.encoder_pp_size,
pipeline_dtype=torch.bfloat16,
)
# Checkpoint callback setup
checkpoint_callback = nl.ModelCheckpoint(
save_last=True,
monitor="reduced_train_loss",
save_top_k=6,
every_n_train_steps=100,
dirpath=args.log_dir,
)
# Trainer setup
trainer = nl.Trainer(
num_nodes=args.num_nodes,
devices=args.devices,
max_steps=max_steps,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
callbacks=[checkpoint_callback, TimingCallback()],
val_check_interval=min(500, max_steps),
limit_val_batches=gbs,
log_every_n_steps=1,
num_sanity_val_steps=0,
)
# Logger setup
nemo_logger = nl.NeMoLogger(
log_dir=args.log_dir,
name=args.name,
wandb=WandbLogger(project=args.wandb_project, name=args.name) if args.wandb_project is not None else None,
)
# Auto resume setup
resume = nl.AutoResume(
resume_if_exists=True,
resume_ignore_no_checkpoint=True,
resume_from_directory=args.log_dir,
restore_config=nl.RestoreConfig(path=args.restore_path) if args.restore_path is not None else None,
)
# Optimizer and scheduler setup
opt_config = OptimizerConfig(
optimizer='adam',
lr=args.lr,
adam_beta1=0.9,
adam_beta2=0.95,
use_distributed_optimizer=True,
bf16=True,
)
sched = CosineAnnealingScheduler(
max_steps=trainer.max_steps,
warmup_steps=100,
constant_steps=0,
min_lr=args.lr,
)
opt = MegatronOptimizerModule(opt_config, sched)
# PEFT setup
if args.peft == 'lora':
peft = vlm.peft.LoRA(
freeze_vision_model=True,
target_modules=[
"linear_qkv",
"linear_q",
"linear_kv",
],
dim=8,
alpha=32,
dropout=0.05,
dropout_position="pre",
)
else:
peft = None
llm.finetune(
model=model,
data=data,
trainer=trainer,
peft=peft,
log=nemo_logger,
optim=opt,
resume=resume,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mllama Model Training Script")
parser.add_argument(
"--restore_path", type=str, required=False, default=None, help="Path to restore model from checkpoint"
)
parser.add_argument("--data_type", type=str, required=False, default="mock", help="mock | llava | energon")
parser.add_argument("--data_path", type=str, required=False, help="Path to the dataset")
parser.add_argument("--image_folder", type=str, required=False, help="Path to the image folder")
parser.add_argument(
"--log_dir",
type=str,
required=False,
default="/results",
help="Directory for logging and checkpoints",
)
parser.add_argument("--devices", type=int, required=False, default=1)
parser.add_argument("--num_workers", type=int, required=False, default=4)
parser.add_argument("--num_nodes", type=int, required=False, default=1)
parser.add_argument("--max_steps", type=int, required=False, default=5190)
parser.add_argument("--tp_size", type=int, required=False, default=1)
parser.add_argument("--pp_size", type=int, required=False, default=1)
parser.add_argument("--encoder_pp_size", type=int, required=False, default=0)
parser.add_argument("--name", type=str, required=False, default="neva_pretrain")
parser.add_argument("--peft", type=str, default='none', help="none | lora")
parser.add_argument("--wandb_project", type=str, required=False, default=None)
parser.add_argument("--gbs", type=int, required=False, default=64, help="Global batch size")
parser.add_argument("--mbs", type=int, required=False, default=2, help="Micro batch size")
parser.add_argument("--lr", type=float, required=False, default=2.0e-06, help="Learning rate")
parser.add_argument(
"--use_toy_model",
action="store_true",
help="Toy size model used for testing",
)
args = parser.parse_args()
main(args)
|