File size: 5,950 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Example:
  python scripts/vlm/mllama_generate.py --load_from_hf
"""

import argparse

import requests
import torch
from megatron.core.inference.common_inference_params import CommonInferenceParams
from PIL import Image
from transformers import AutoProcessor

from nemo import lightning as nl
from nemo.collections import vlm
from nemo.collections.vlm.inference import generate as vlm_generate
from nemo.collections.vlm.inference import setup_inference_wrapper

model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"


def load_image(image_url: str) -> Image.Image:
    # pylint: disable=C0115,C0116
    try:
        response = requests.get(image_url, stream=True)
        response.raise_for_status()
        image = Image.open(response.raw)
        return image
    except requests.exceptions.RequestException as e:
        print(f"Error loading image from {image_url}: {e}")
        return None


def generate(model, processor, images, text, params):
    # pylint: disable=C0115,C0116
    messages = [
        {
            "role": "user",
            "content": [{"type": "text", "text": text}],
        }
    ]
    input_text = processor.apply_chat_template(messages, add_generation_prompt=True)

    model = setup_inference_wrapper(model, processor.tokenizer)

    prompts = [input_text]
    images = [images]
    result = vlm_generate(
        model,
        processor.tokenizer,
        processor.image_processor,
        prompts,
        images,
        inference_params=params,
    )

    generated_texts = list(result)[0].generated_text

    if torch.distributed.get_rank() == 0:
        print("======== GENERATED TEXT OUTPUT ========")
        print(f"{generated_texts}")
        print("=======================================")
    return generated_texts


def main(args) -> None:
    # pylint: disable=C0115,C0116
    strategy = nl.MegatronStrategy(
        tensor_model_parallel_size=args.tp_size,
        ckpt_load_optimizer=False,
        ckpt_save_optimizer=False,
    )
    trainer = nl.Trainer(
        devices=args.tp_size,
        max_steps=1000,
        accelerator="gpu",
        strategy=strategy,
        plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
        val_check_interval=1000,
        limit_val_batches=50,
    )

    processor = AutoProcessor.from_pretrained(args.processor_name)
    tokenizer = processor.tokenizer

    fabric = trainer.to_fabric()

    if args.load_from_hf:
        model = fabric.import_model(f"hf://{model_id}", vlm.MLlamaModel)
    else:
        model = vlm.MLlamaModel(vlm.MLlamaConfig11BInstruct(), tokenizer=tokenizer)
        model = fabric.load_model(args.local_model_path, model)

    # Load the image
    raw_images = [load_image(url) for url in args.image_url]
    if not raw_images:
        return  # Exit if the image can't be loaded

    params = CommonInferenceParams(
        temperature=args.temperature,
        top_p=args.top_p,
        top_k=args.top_k,
        num_tokens_to_generate=args.num_tokens_to_generate,
    )
    generate(model, processor, images=raw_images, text=args.prompt, params=params)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="")
    parser.add_argument(
        "--load_from_hf",
        action="store_true",
        help="Flag to indicate whether to load the model from Hugging Face hub.",
    )
    parser.add_argument(
        "--local_model_path",
        type=str,
        default=None,
        help="Local path to the model if not loading from Hugging Face.",
    )
    parser.add_argument(
        "--processor_name",
        type=str,
        default="meta-llama/Llama-3.2-11B-Vision-Instruct",
        help="Name or path of processor",
    )
    parser.add_argument(
        "--prompt",
        type=str,
        default="<|image|>\nDescribe the image.",
        help="Input prompt",
    )
    parser.add_argument(
        "--image_url",
        nargs='+',
        type=str,
        # pylint: disable=line-too-long
        default=[
            "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
        ],
        help="List of the image urls to use for inference.",
    )
    parser.add_argument(
        "--temperature",
        type=float,
        default=1.0,
        help="""Temperature to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
    )
    parser.add_argument(
        "--top_p",
        type=float,
        default=0.0,
        help="""top_p to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
    )
    parser.add_argument(
        "--top_k",
        type=int,
        default=1,
        help="""top_k to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
    )
    parser.add_argument(
        "--num_tokens_to_generate",
        type=int,
        default=50,
        help="""Number of tokens to generate per prompt""",
    )
    parser.add_argument("--devices", type=int, required=False, default=1)
    parser.add_argument("--tp_size", type=int, required=False, default=1)
    parser.add_argument("--pp_size", type=int, required=False, default=1)
    parser.add_argument("--encoder_pp_size", type=int, required=False, default=0)

    args = parser.parse_args()
    main(args)