Spaces:
Runtime error
Runtime error
File size: 5,950 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
python scripts/vlm/mllama_generate.py --load_from_hf
"""
import argparse
import requests
import torch
from megatron.core.inference.common_inference_params import CommonInferenceParams
from PIL import Image
from transformers import AutoProcessor
from nemo import lightning as nl
from nemo.collections import vlm
from nemo.collections.vlm.inference import generate as vlm_generate
from nemo.collections.vlm.inference import setup_inference_wrapper
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
def load_image(image_url: str) -> Image.Image:
# pylint: disable=C0115,C0116
try:
response = requests.get(image_url, stream=True)
response.raise_for_status()
image = Image.open(response.raw)
return image
except requests.exceptions.RequestException as e:
print(f"Error loading image from {image_url}: {e}")
return None
def generate(model, processor, images, text, params):
# pylint: disable=C0115,C0116
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text}],
}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
model = setup_inference_wrapper(model, processor.tokenizer)
prompts = [input_text]
images = [images]
result = vlm_generate(
model,
processor.tokenizer,
processor.image_processor,
prompts,
images,
inference_params=params,
)
generated_texts = list(result)[0].generated_text
if torch.distributed.get_rank() == 0:
print("======== GENERATED TEXT OUTPUT ========")
print(f"{generated_texts}")
print("=======================================")
return generated_texts
def main(args) -> None:
# pylint: disable=C0115,C0116
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=args.tp_size,
ckpt_load_optimizer=False,
ckpt_save_optimizer=False,
)
trainer = nl.Trainer(
devices=args.tp_size,
max_steps=1000,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
val_check_interval=1000,
limit_val_batches=50,
)
processor = AutoProcessor.from_pretrained(args.processor_name)
tokenizer = processor.tokenizer
fabric = trainer.to_fabric()
if args.load_from_hf:
model = fabric.import_model(f"hf://{model_id}", vlm.MLlamaModel)
else:
model = vlm.MLlamaModel(vlm.MLlamaConfig11BInstruct(), tokenizer=tokenizer)
model = fabric.load_model(args.local_model_path, model)
# Load the image
raw_images = [load_image(url) for url in args.image_url]
if not raw_images:
return # Exit if the image can't be loaded
params = CommonInferenceParams(
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
num_tokens_to_generate=args.num_tokens_to_generate,
)
generate(model, processor, images=raw_images, text=args.prompt, params=params)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument(
"--load_from_hf",
action="store_true",
help="Flag to indicate whether to load the model from Hugging Face hub.",
)
parser.add_argument(
"--local_model_path",
type=str,
default=None,
help="Local path to the model if not loading from Hugging Face.",
)
parser.add_argument(
"--processor_name",
type=str,
default="meta-llama/Llama-3.2-11B-Vision-Instruct",
help="Name or path of processor",
)
parser.add_argument(
"--prompt",
type=str,
default="<|image|>\nDescribe the image.",
help="Input prompt",
)
parser.add_argument(
"--image_url",
nargs='+',
type=str,
# pylint: disable=line-too-long
default=[
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
],
help="List of the image urls to use for inference.",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="""Temperature to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--top_p",
type=float,
default=0.0,
help="""top_p to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--top_k",
type=int,
default=1,
help="""top_k to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--num_tokens_to_generate",
type=int,
default=50,
help="""Number of tokens to generate per prompt""",
)
parser.add_argument("--devices", type=int, required=False, default=1)
parser.add_argument("--tp_size", type=int, required=False, default=1)
parser.add_argument("--pp_size", type=int, required=False, default=1)
parser.add_argument("--encoder_pp_size", type=int, required=False, default=0)
args = parser.parse_args()
main(args)
|