Spaces:
Runtime error
Runtime error
File size: 11,894 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Mock Data Example:
torchrun --nproc_per_node=8 scripts/vlm/neva_finetune.py \
--devices=8 --tp=4 --data_type=mock
Llava Data Example:
torchrun --nproc_per_node=8 /path/to/NeMo/scripts/vlm/neva_finetune.py \
--data_path "/path/to/dataset/llava_v1_5_mix665k.json" \
--image_folder "/path/to/dataset/images" \
--data_type llava \
--num_nodes 1 \
--log_dir "/path/to/experiments/neva_finetune" \
--devices=8 \
--projector_type=mcore_mlp \
--tp_size 2 --pp_size 1 \
--gbs 128 --mbs 4 \
--wandb_project=neva_demo \
--name=neva_finetune \
--restore_path "/path/to/experiments/neva_pretrain_checkpoint"
"""
import argparse
import torch
from lightning.pytorch.loggers import WandbLogger
from megatron.core.optimizer import OptimizerConfig
from nemo import lightning as nl
from nemo.collections import llm, vlm
from nemo.collections.multimodal.data.energon.task_encoder import MultiModalTaskEncoder
from nemo.collections.vlm import ImageDataConfig
from nemo.lightning.pytorch.callbacks.megatron_comm_overlap import MegatronCommOverlapCallback
from nemo.lightning.pytorch.optim import CosineAnnealingScheduler
from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule
from nemo.utils.exp_manager import TimingCallback
def main(args):
# pylint: disable=C0115,C0116
# Global and micro batch sizes
gbs = args.gbs
mbs = args.mbs
max_steps = args.max_steps
num_workers = args.num_workers
decoder_seq_length = args.decoder_seq_length
# Submodules configurations
language_transformer_config = llm.Llama2Config7B(
seq_length=decoder_seq_length,
)
vision_transformer_config = vlm.HFCLIPVisionConfig(
pretrained_model_name_or_path="openai/clip-vit-large-patch14-336"
)
vision_projection_config = vlm.MultimodalProjectorConfig(
projector_type=args.projector_type,
input_size=vision_transformer_config.hidden_size,
hidden_size=language_transformer_config.hidden_size,
ffn_hidden_size=language_transformer_config.hidden_size,
)
if args.use_toy_model:
language_transformer_config.num_layers = 2
num_workers = 0
# NEVA model configuration
neva_config = vlm.NevaConfig(
language_transformer_config=language_transformer_config,
vision_transformer_config=vision_transformer_config,
vision_projection_config=vision_projection_config,
language_model_from_pretrained=args.language_model_path,
freeze_language_model=False,
freeze_vision_model=True,
)
num_image_embeddings_per_tile = vision_transformer_config.num_image_embeddings_per_tile
if args.data_type == "llava":
# Data configuration
data_config = ImageDataConfig(
image_folder=args.image_folder,
conv_template="v1",
)
# Data module setup
data = vlm.NevaPreloadedDataModule(
paths=args.data_path,
data_config=data_config,
seq_length=decoder_seq_length,
decoder_seq_length=None,
global_batch_size=gbs,
micro_batch_size=mbs,
tokenizer=None,
image_processor=None,
num_workers=num_workers,
packed_sequence=args.use_packed_sequence,
num_image_embeddings_per_tile=num_image_embeddings_per_tile,
)
elif args.data_type == "energon":
from transformers import AutoProcessor
from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer
from nemo.collections.multimodal.data.energon import (
EnergonMultiModalDataModule,
ImageToken,
LLaVATemplateConfig,
MultiModalSampleConfig,
)
processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
image_processor = processor.image_processor
tokenizer = AutoTokenizer("llava-hf/llava-1.5-7b-hf", use_fast=False)
# Configure multimodal samples
config = MultiModalSampleConfig(
image_token=ImageToken(token_str="<image>", token_id=-200),
ignore_place_holder=-100,
conversation_template_config=LLaVATemplateConfig(),
)
# Initialize the data module
data = EnergonMultiModalDataModule(
path=args.data_path,
tokenizer=tokenizer,
image_processor=image_processor,
seq_length=decoder_seq_length,
micro_batch_size=mbs,
global_batch_size=gbs,
num_workers=num_workers,
multimodal_sample_config=config,
task_encoder=MultiModalTaskEncoder(
tokenizer=tokenizer,
image_processor=image_processor,
multimodal_sample_config=config,
packed_sequence=args.use_packed_sequence,
# leave some space for perf padding, otherwise after packing and padding,
# it will go beyond max seq len, then it will need a truncation.
packed_sequence_size=int(decoder_seq_length * 0.9),
num_image_embeddings_per_tile=num_image_embeddings_per_tile,
),
packing_buffer_size=200 if args.use_packed_sequence else None,
)
elif args.data_type == "mock":
data = vlm.NevaMockDataModule(
seq_length=decoder_seq_length,
global_batch_size=gbs,
micro_batch_size=mbs,
tokenizer=None,
image_processor=None,
num_workers=num_workers,
packed_sequence=args.use_packed_sequence,
)
else:
raise ValueError(f"Data type {args.data_type} not supported")
from megatron.core.distributed import DistributedDataParallelConfig
# Training strategy setup
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=args.tp_size,
pipeline_model_parallel_size=args.pp_size,
encoder_pipeline_model_parallel_size=args.encoder_pp_size,
context_parallel_size=args.cp_size,
pipeline_dtype=torch.bfloat16,
sequence_parallel=True,
ddp=DistributedDataParallelConfig(
check_for_nan_in_grad=True,
grad_reduce_in_fp32=True,
overlap_grad_reduce=False,
overlap_param_gather=False,
average_in_collective=True,
),
ckpt_load_strictness="log_all",
)
model = vlm.NevaModel(neva_config, tokenizer=data.tokenizer)
# Checkpoint callback setup
checkpoint_callback = nl.ModelCheckpoint(
save_last=True,
monitor="reduced_train_loss",
save_top_k=2,
every_n_train_steps=1000,
dirpath=args.log_dir,
)
# Trainer setup
trainer = nl.Trainer(
num_nodes=args.num_nodes,
devices=args.devices,
max_steps=max_steps,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
callbacks=[
checkpoint_callback,
TimingCallback(),
MegatronCommOverlapCallback(tp_comm_overlap=False),
],
val_check_interval=min(500, max_steps),
limit_val_batches=gbs,
log_every_n_steps=1,
num_sanity_val_steps=0,
)
# Logger setup
nemo_logger = nl.NeMoLogger(
log_dir=args.log_dir,
name=args.name,
wandb=WandbLogger(project=args.wandb_project, name=args.name) if args.wandb_project is not None else None,
)
# Auto resume setup
resume = nl.AutoResume(
resume_if_exists=True,
resume_ignore_no_checkpoint=True,
resume_from_directory=args.log_dir,
restore_config=nl.RestoreConfig(path=args.restore_path) if args.restore_path is not None else None,
)
# Optimizer and scheduler setup
opt_config = OptimizerConfig(
optimizer='adam',
lr=args.lr,
adam_beta1=0.9,
adam_beta2=0.95,
use_distributed_optimizer=True,
bf16=True,
)
sched = CosineAnnealingScheduler(
max_steps=trainer.max_steps,
warmup_steps=150,
constant_steps=0,
min_lr=1.0e-07,
)
opt = MegatronOptimizerModule(opt_config, sched)
# PEFT setup
if args.peft == 'lora':
peft = vlm.peft.LoRA(
target_modules=[
"linear_qkv",
"linear_proj",
"linear_fc1",
"linear_fc2",
]
)
else:
peft = None
llm.finetune(
model=model,
data=data,
trainer=trainer,
peft=peft,
log=nemo_logger,
optim=opt,
resume=resume,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="NEVA Model Training Script")
# Argument parsing
parser.add_argument("--data_type", type=str, required=False, default="mock", help="mock | llava | energon")
parser.add_argument("--data_path", type=str, required=False, default=None, help="Path to the dataset JSON file")
parser.add_argument("--image_folder", type=str, required=False, default=None, help="Path to the image folder")
parser.add_argument(
"--log_dir", type=str, required=False, default="/results", help="Directory for logging and checkpoints"
)
parser.add_argument(
"--language_model_path", type=str, required=False, default=None, help="Path to the pretrained language model"
)
parser.add_argument(
"--restore_path", type=str, required=False, default=None, help="Path to restore model from checkpoint"
)
parser.add_argument("--devices", type=int, required=False, default=1)
parser.add_argument("--num_workers", type=int, required=False, default=4)
parser.add_argument("--num_nodes", type=int, required=False, default=1)
parser.add_argument("--max_steps", type=int, required=False, default=5190)
parser.add_argument("--tp_size", type=int, required=False, default=1)
parser.add_argument("--pp_size", type=int, required=False, default=1)
parser.add_argument("--cp_size", type=int, required=False, default=1)
parser.add_argument("--encoder_pp_size", type=int, required=False, default=0)
parser.add_argument("--projector_type", type=str, required=False, default="mcore_mlp")
parser.add_argument("--name", type=str, required=False, default="neva_pretrain")
parser.add_argument("--peft", type=str, default='none', help="none | lora")
parser.add_argument("--wandb_project", type=str, required=False, default=None)
parser.add_argument("--gbs", type=int, required=False, default=128, help="Global batch size")
parser.add_argument("--mbs", type=int, required=False, default=2, help="Micro batch size")
parser.add_argument("--lr", type=float, required=False, default=2.0e-06, help="Learning rate")
parser.add_argument("--decoder_seq_length", type=int, required=False, default=4096, help="decoder sequence length")
parser.add_argument(
"--use_packed_sequence",
action="store_true",
)
parser.add_argument(
"--use_toy_model",
action="store_true",
help="Toy size model used for testing",
)
args = parser.parse_args()
main(args)
|