Spaces:
Runtime error
Runtime error
File size: 11,492 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Example:
python scripts/vlm/neva_generate.py --load_from_hf
python scripts/vlm/neva_generate.py --local_model_path <PATH_TO_MODEL> --enable_quantization
"""
import argparse
import requests
import torch
from megatron.core.inference.common_inference_params import CommonInferenceParams
from PIL import Image
from transformers import AutoProcessor
import nemo.lightning as nl
from nemo.collections.vlm import Llava15Config7B, LlavaModel
from nemo.collections.vlm.inference import generate as vlm_generate
from nemo.collections.vlm.inference import setup_inference_wrapper
from nemo.utils import logging
try:
import modelopt.torch.quantization as mtq
from megatron.core.post_training.modelopt.gpt.model_specs import get_gpt_modelopt_spec
HAVE_MODELOPT = True
except (ImportError, ModuleNotFoundError):
HAVE_MODELOPT = False
def load_image(image_url: str) -> Image.Image:
# pylint: disable=C0115,C0116
try:
response = requests.get(image_url, stream=True)
response.raise_for_status()
image = Image.open(response.raw)
return image
except requests.exceptions.RequestException as e:
print(f"Error loading image from {image_url}: {e}")
return None
def generate(model, processor, images, text, params):
# pylint: disable=C0115,C0116
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": text},
{"type": "image"},
],
},
]
input_text = processor.apply_chat_template(conversation, add_generation_prompt=True)
class NevaTokenizer:
# pylint: disable=C0115,C0116
def __init__(self, tokenizer):
self._tokenizer = tokenizer
self.vocab_size = tokenizer.vocab_size
self.eos_token_id = tokenizer.eos_token_id
def decode(self, tokens, **kwargs):
modified_tokens = []
for x in tokens:
if x == -200:
modified_tokens.append(0)
elif x != 1:
modified_tokens.append(x)
return self._tokenizer.decode(modified_tokens, skip_special_tokens=False)
def encode(self, prompt, **kwargs):
prompts_tokens = self._tokenizer.encode(prompt, add_special_tokens=True)
return [-200 if x == 32000 else x for x in prompts_tokens]
model = setup_inference_wrapper(model, processor.tokenizer)
prompts = [input_text]
images = [images]
result = vlm_generate(
model,
NevaTokenizer(processor.tokenizer),
processor.image_processor,
prompts,
images,
inference_params=params,
)
generated_texts = list(result)[0].generated_text
if torch.distributed.get_rank() == 0:
print("======== GENERATED TEXT OUTPUT ========")
print(f"{generated_texts}")
print("=======================================")
return generated_texts
def legacy_generate(model, processor, raw_image, text, num_tokens_to_generate):
# pylint: disable=C0115,C0116
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": text},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
hf_tokenizer = processor.tokenizer
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
input_ids = hf_tokenizer(prompt, return_tensors='pt')['input_ids'].cuda()
input_ids[input_ids == 32000] = -200
images = inputs['pixel_values'].cuda()
images = images.reshape(images.size(0), 3, 336, 336)
position_ids = (
torch.arange(input_ids.size(1), dtype=torch.long, device=input_ids.device).unsqueeze(0).expand_as(input_ids)
)
model = model.module.cuda()
model.eval()
generated_ids = input_ids.clone()
# Greedy generation loop
for _ in range(num_tokens_to_generate):
with torch.no_grad():
output = model(
images=images,
input_ids=input_ids,
position_ids=position_ids,
attention_mask=None,
)
next_token_ids = torch.argmax(output[:, -1], dim=-1, keepdim=True)
generated_ids = torch.cat([generated_ids, next_token_ids], dim=-1)
input_ids = generated_ids
position_ids = (
torch.arange(input_ids.size(1), dtype=torch.long, device=input_ids.device)
.unsqueeze(0)
.expand_as(input_ids)
)
# If the generated token is the end of sequence token, stop generating
if next_token_ids.item() == hf_tokenizer.eos_token_id:
break
generated_ids[generated_ids == -200] = 0
generated_texts = hf_tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
logging.info("======== GENERATED TEXT OUTPUT ========")
logging.info(f"{generated_texts}")
logging.info("=======================================")
def main(args) -> None:
# pylint: disable=C0115,C0116
strategy = nl.MegatronStrategy(
tensor_model_parallel_size=1,
ckpt_include_optimizer=False,
)
trainer = nl.Trainer(
devices=1,
max_steps=1000,
accelerator="gpu",
strategy=strategy,
plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
val_check_interval=1000,
limit_val_batches=50,
)
processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
hf_tokenizer = processor.tokenizer
# Load the image
raw_image = load_image(args.image_url)
if raw_image is None:
return # Exit if the image can't be loaded
fabric = trainer.to_fabric()
# Decide whether to import or load the model based on the input arguments
if args.load_from_hf:
model = fabric.import_model("hf://llava-hf/llava-1.5-7b-hf", LlavaModel)
else:
config = Llava15Config7B()
if args.enable_quantization:
new_transformer_layer_spec = get_gpt_modelopt_spec(
config.language_transformer_config, local_core_attention=False, remap_te_layernorm=True
)
config.language_transformer_config.transformer_layer_spec = new_transformer_layer_spec
model = LlavaModel(config, tokenizer=hf_tokenizer)
model = fabric.load_model(args.local_model_path, model)
params = CommonInferenceParams(
temperature=args.temperature,
top_p=args.top_p,
top_k=args.top_k,
num_tokens_to_generate=args.num_tokens_to_generate,
)
if args.legacy_generate:
legacy_generate(model, processor, raw_image, args.prompt, args.num_tokens_to_generate)
else:
generate(model, processor, images=raw_image, text=args.prompt, params=params)
if args.enable_quantization:
base_img_url = "http://images.cocodataset.org/val2017/"
images = [
"000000039769.jpg",
"000000002685.jpg",
"000000004495.jpg",
"000000005001.jpg",
"000000003845.jpg",
"000000011615.jpg",
"000000010977.jpg",
"000000010764.jpg",
"000000010707.jpg",
"000000010583.jpg",
"000000010363.jpg",
"000000010092.jpg",
"000000009914.jpg",
"000000009891.jpg",
"000000009769.jpg",
"000000009590.jpg",
"000000009483.jpg",
"000000009448.jpg",
"000000009378.jpg",
"000000008899.jpg",
]
quantization_images_url = [base_img_url + img_id for img_id in images]
def forward_loop():
for img_url in quantization_images_url:
raw_image = load_image(img_url)
response = generate(
model, processor, images=raw_image, text="can you describe this image?", params=params
)
print(img_url, "->", response)
# Please see https://nvidia.github.io/TensorRT-Model-Optimizer/guides/_choosing_quant_methods.html
# for the selection of quantization algorithms
if args.quant_alg == "int8_sq":
mtq_config = mtq.INT8_SMOOTHQUANT_CFG
elif args.quant_alg == "fp8":
mtq_config = mtq.FP8_DEFAULT_CFG
elif args.quant_alg == "awq":
mtq_config = mtq.INT4_AWQ_CFG
else:
raise ValueError(f"Unsupported quantization algorithm: {args.quantization.algorithm}")
logging.info("-------- Start Quantization --------")
mtq.quantize(model, mtq_config, forward_loop)
logging.info("-------- End Quantization --------")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LLaVA Multimodal Inference")
parser.add_argument(
"--load_from_hf",
action="store_true",
help="Flag to indicate whether to load the model from Hugging Face hub.",
)
parser.add_argument(
"--local_model_path",
type=str,
default=None,
help="Local path to the model if not loading from Hugging Face.",
)
parser.add_argument(
"--image_url",
type=str,
default="http://images.cocodataset.org/val2017/000000039769.jpg",
help="URL of the image to use for inference.",
)
parser.add_argument(
"--prompt",
type=str,
default="What are these?",
help="Input prompt",
)
parser.add_argument(
"--temperature",
type=float,
default=1.0,
help="""Temperature to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--top_p",
type=float,
default=0.0,
help="""top_p to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--top_k",
type=int,
default=1,
help="""top_k to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
)
parser.add_argument(
"--num_tokens_to_generate",
type=int,
default=20,
help="""Number of tokens to generate per prompt""",
)
parser.add_argument(
"--legacy_generate",
action="store_true",
help="Flag to indicate whether to use legacy generation function.",
)
parser.add_argument(
"--enable_quantization",
action="store_true",
help="Flag to indicate whether to enable quantization.",
)
parser.add_argument(
"--quant_alg",
type=str,
default="fp8",
help="Input prompt",
)
args = parser.parse_args()
main(args)
|