File size: 5,550 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
python qwen25vl_generate.py --load_from_hf --osl 50
"""

import argparse

import torch
from megatron.core.inference.common_inference_params import CommonInferenceParams
from qwen_vl_utils import process_vision_info
from transformers import AutoProcessor

import nemo.lightning as nl
from nemo.collections.vlm import Qwen2VLModel, Qwen25VLConfig3B, Qwen25VLConfig7B, Qwen25VLConfig32B, Qwen25VLConfig72B
from nemo.collections.vlm.inference import generate as vlm_generate
from nemo.collections.vlm.inference import setup_inference_wrapper
from nemo.utils import logging


def main(args) -> None:
    # pylint: disable=C0115,C0116,C0301

    strategy = nl.MegatronStrategy(
        tensor_model_parallel_size=args.tp_size,
        pipeline_model_parallel_size=args.pp_size,
        ckpt_include_optimizer=False,
    )
    trainer = nl.Trainer(
        devices=args.tp_size * args.pp_size,
        max_steps=1000,
        accelerator="gpu",
        strategy=strategy,
        plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"),
        val_check_interval=1000,
        limit_val_batches=50,
    )

    # Tokenize the input texts
    min_pixels = 16 * 28 * 28
    max_pixels = 64 * 28 * 28
    processor = AutoProcessor.from_pretrained(
        f"Qwen/Qwen2.5-VL-{args.model_size}-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
    )

    hf_tokenizer = processor.tokenizer

    fabric = trainer.to_fabric()
    # Decide whether to import or load the model based on the input arguments
    if args.load_from_hf:
        model = fabric.import_model(f"hf://Qwen/Qwen2.5-VL-{args.model_size}-Instruct", Qwen2VLModel)
    else:
        model_config = {
            "3B": Qwen25VLConfig3B,
            "7B": Qwen25VLConfig7B,
            "32B": Qwen25VLConfig32B,
            "72B": Qwen25VLConfig72B,
        }[args.model_size]()
        model = Qwen2VLModel(model_config, model_version="qwen25-vl", tokenizer=hf_tokenizer)
        model = fabric.load_model(args.local_model_path, model)
    model = model.module.cuda()
    model.eval()

    inference_wrapped_model = setup_inference_wrapper(model, hf_tokenizer)

    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
                    "image": args.image_url,
                },
                {"type": "text", "text": "Describe this image."},
            ],
        }
    ]

    # Preparation for inference
    text = processor.apply_chat_template(messages, tokenizer=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)

    inference_params = CommonInferenceParams(
        temperature=args.temperature,
        top_p=args.top_p,
        top_k=args.top_k,
        num_tokens_to_generate=args.osl,
    )

    prompts = [text]
    images = [image_inputs]
    result = vlm_generate(
        inference_wrapped_model,
        hf_tokenizer,
        processor.image_processor,
        prompts,
        images,
        processor=processor,
        inference_params=inference_params,
    )

    logging.info("======== GENERATED TEXT OUTPUT ========")
    logging.info(f"{args.image_url}, \t\t{result[0].generated_text}")
    logging.info("=======================================")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Qwen2.5VL Multimodal Inference")
    parser.add_argument(
        "--load_from_hf", action="store_true", help="Flag to indicate whether to load the model from Hugging Face hub."
    )
    parser.add_argument(
        "--local_model_path",
        type=str,
        default=None,
        help="Path to the local model if not loading from Hugging Face.",
    )
    parser.add_argument(
        "--image_url",
        type=str,
        default="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
        help="URL of the image to use for inference.",
    )
    parser.add_argument("--model_size", type=str, default="3B", choices=["3B", "7B", "32B", "72B"])
    parser.add_argument('--osl', type=int, default=30, help='output seq length')
    parser.add_argument('--tp_size', type=int, default=1, help='tensor parallel size')
    parser.add_argument('--pp_size', type=int, default=1, help='pipeline parallel size')
    parser.add_argument(
        "--temperature",
        type=float,
        default=1.0,
        help="""Temperature to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
    )
    parser.add_argument(
        "--top_p",
        type=float,
        default=0.0,
        help="""top_p to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
    )
    parser.add_argument(
        "--top_k",
        type=int,
        default=1,
        help="""top_k to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""",
    )
    args = parser.parse_args()

    main(args)