File size: 22,424 Bytes
0558aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright 2018-2020 William Falcon
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import sys
from functools import partial
from typing import Callable, Optional

import numpy as np
import pytest
import torch
from scipy.stats import entropy
from torch.distributions.utils import logits_to_probs
from torch.multiprocessing import Pool, set_start_method
from torchmetrics import Metric

from nemo.collections.common.metrics import GlobalAverageLossMetric, Perplexity

NUM_PROCESSES = 2
NUM_BATCHES = 10
BATCH_SIZE = 16
NUM_CLASSES = 5
EXTRA_DIM = 3
THRESHOLD = 0.5


def setup_ddp(rank, world_size):
    """ Setup ddp enviroment """
    os.environ["MASTER_ADDR"] = 'localhost'
    os.environ['MASTER_PORT'] = '8088'

    if torch.distributed.is_available() and sys.platform not in ['win32', 'cygwin']:
        torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)


def _class_test(
    rank: int,
    worldsize: int,
    preds: torch.Tensor,
    target: torch.Tensor,
    metric_class: Metric,
    sk_metric: Callable,
    dist_sync_on_step: bool,
    metric_args: dict = {},
    check_dist_sync_on_step: bool = True,
    check_batch: bool = True,
    atol: float = 1e-8,
):
    """ Utility function doing the actual comparison between lightning class metric
        and reference metric.
        Args:
            rank: rank of current process
            worldsize: number of processes
            preds: torch tensor with predictions
            target: torch tensor with targets
            metric_class: lightning metric class that should be tested
            sk_metric: callable function that is used for comparison
            dist_sync_on_step: bool, if true will synchronize metric state across
                processes at each ``forward()``
            metric_args: dict with additional arguments used for class initialization
            check_dist_sync_on_step: bool, if true will check if the metric is also correctly
                calculated per batch per device (and not just at the end)
            check_batch: bool, if true will check if the metric is also correctly
                calculated across devices for each batch (and not just at the end)
    """
    # Instanciate lightning metric
    metric = metric_class(dist_sync_on_step=dist_sync_on_step, **metric_args)

    # verify metrics work after being loaded from pickled state
    pickled_metric = pickle.dumps(metric)
    metric = pickle.loads(pickled_metric)

    for i in range(rank, NUM_BATCHES, worldsize):
        batch_result = metric(preds[i], target[i])

        if metric.dist_sync_on_step:
            if rank == 0:
                ddp_preds = torch.stack([preds[i + r] for r in range(worldsize)])
                ddp_target = torch.stack([target[i + r] for r in range(worldsize)])
                sk_batch_result = sk_metric(ddp_preds, ddp_target)
                # assert for dist_sync_on_step
                if check_dist_sync_on_step:
                    assert np.allclose(batch_result.numpy(), sk_batch_result, atol=atol)
        else:
            sk_batch_result = sk_metric(preds[i], target[i])
            # assert for batch
            if check_batch:
                assert np.allclose(batch_result.numpy(), sk_batch_result, atol=atol)

    # check on all batches on all ranks
    result = metric.compute()
    assert isinstance(result, torch.Tensor)

    total_preds = torch.stack([preds[i] for i in range(NUM_BATCHES)])
    total_target = torch.stack([target[i] for i in range(NUM_BATCHES)])
    sk_result = sk_metric(total_preds, total_target)

    # assert after aggregation
    assert np.allclose(result.numpy(), sk_result, atol=atol)


def _functional_test(
    preds: torch.Tensor,
    target: torch.Tensor,
    metric_functional: Callable,
    sk_metric: Callable,
    metric_args: dict = {},
    atol: float = 1e-8,
):
    """ Utility function doing the actual comparison between lightning functional metric
        and reference metric.
        Args:
            preds: torch tensor with predictions
            target: torch tensor with targets
            metric_functional: lightning metric functional that should be tested
            sk_metric: callable function that is used for comparison
            metric_args: dict with additional arguments used for class initialization
    """
    metric = partial(metric_functional, **metric_args)

    for i in range(NUM_BATCHES):
        lightning_result = metric(preds[i], target[i])
        sk_result = sk_metric(preds[i], target[i])

        # assert its the same
        assert np.allclose(lightning_result.numpy(), sk_result, atol=atol)


class MetricTester:
    """ Class used for efficiently run alot of parametrized tests in ddp mode.
        Makes sure that ddp is only setup once and that pool of processes are
        used for all tests.
        All tests should subclass from this and implement a new method called
            `test_metric_name`
        where the method `self.run_metric_test` is called inside.
    """

    atol = 1e-8

    def setup_class(self):
        """ Setup the metric class. This will spawn the pool of workers that are
            used for metric testing and setup_ddp
        """
        try:
            set_start_method('spawn')
        except RuntimeError:
            pass
        self.poolSize = NUM_PROCESSES
        self.pool = Pool(processes=self.poolSize)
        self.pool.starmap(setup_ddp, [(rank, self.poolSize) for rank in range(self.poolSize)])

    def teardown_class(self):
        """ Close pool of workers """
        self.pool.close()
        self.pool.join()

    def run_functional_metric_test(
        self,
        preds: torch.Tensor,
        target: torch.Tensor,
        metric_functional: Callable,
        sk_metric: Callable,
        metric_args: dict = {},
    ):
        """ Main method that should be used for testing functions. Call this inside
            testing method
            Args:
                preds: torch tensor with predictions
                target: torch tensor with targets
                metric_functional: lightning metric class that should be tested
                sk_metric: callable function that is used for comparison
                metric_args: dict with additional arguments used for class initialization
        """
        _functional_test(
            preds=preds,
            target=target,
            metric_functional=metric_functional,
            sk_metric=sk_metric,
            metric_args=metric_args,
            atol=self.atol,
        )

    def run_class_metric_test(
        self,
        ddp: bool,
        preds: torch.Tensor,
        target: torch.Tensor,
        metric_class: Metric,
        sk_metric: Callable,
        dist_sync_on_step: bool,
        metric_args: dict = {},
        check_dist_sync_on_step: bool = True,
        check_batch: bool = True,
    ):
        """ Main method that should be used for testing class. Call this inside testing
            methods.
            Args:
                ddp: bool, if running in ddp mode or not
                preds: torch tensor with predictions
                target: torch tensor with targets
                metric_class: lightning metric class that should be tested
                sk_metric: callable function that is used for comparison
                dist_sync_on_step: bool, if true will synchronize metric state across
                    processes at each ``forward()``
                metric_args: dict with additional arguments used for class initialization
                check_dist_sync_on_step: bool, if true will check if the metric is also correctly
                    calculated per batch per device (and not just at the end)
                check_batch: bool, if true will check if the metric is also correctly
                    calculated across devices for each batch (and not just at the end)
        """
        if ddp:
            if sys.platform == "win32":
                pytest.skip("DDP not supported on windows")

            self.pool.starmap(
                partial(
                    _class_test,
                    preds=preds,
                    target=target,
                    metric_class=metric_class,
                    sk_metric=sk_metric,
                    dist_sync_on_step=dist_sync_on_step,
                    metric_args=metric_args,
                    check_dist_sync_on_step=check_dist_sync_on_step,
                    check_batch=check_batch,
                    atol=self.atol,
                ),
                [(rank, self.poolSize) for rank in range(self.poolSize)],
            )
        else:
            _class_test(
                0,
                1,
                preds=preds,
                target=target,
                metric_class=metric_class,
                sk_metric=sk_metric,
                dist_sync_on_step=dist_sync_on_step,
                metric_args=metric_args,
                check_dist_sync_on_step=check_dist_sync_on_step,
                check_batch=check_batch,
                atol=self.atol,
            )


def reference_perplexity_func(probs):
    ent = entropy(probs, axis=-1)
    ppl = np.exp(ent)
    return ppl.mean()


def _perplexity_class_test(
    rank: int,
    worldsize: int,
    probs: Optional[torch.Tensor],
    logits: Optional[torch.Tensor],
    dist_sync_on_step: bool,
    metric_args: dict = {},
    check_dist_sync_on_step: bool = True,
    check_batch: bool = True,
    atol: float = 1e-8,
):
    """ Utility function doing the actual comparison between lightning class metric
        and reference metric.
        Args:
            rank: rank of current process
            worldsize: number of processes
            probs: torch tensor with probabilities
            logits: torch tensor with logits. The function checks ``probs`` and ``logits are mutually exclusive for
                ``Perplexity`` metric.
            dist_sync_on_step: bool, if true will synchronize metric state across
                processes at each ``forward()``
            metric_args: dict with additional arguments used for class initialization
            check_dist_sync_on_step: bool, if true will check if the metric is also correctly
                calculated per batch per device (and not just at the end)
            check_batch: bool, if true will check if the metric is also correctly
                calculated across devices for each batch (and not just at the end)
    """
    # Instanciate lightning metric
    perplexity = Perplexity(dist_sync_on_step=dist_sync_on_step, **metric_args)
    if (probs is None) == (logits is None):
        with pytest.raises(ValueError):
            perplexity(probs, logits)
        return

    # verify perplexity works after being loaded from pickled state
    pickled_metric = pickle.dumps(perplexity)
    perplexity = pickle.loads(pickled_metric)

    for i in range(rank, NUM_BATCHES, worldsize):
        batch_result = perplexity(None if probs is None else probs[i], None if logits is None else logits[i])

        if perplexity.dist_sync_on_step:
            if rank == 0:
                if probs is not None:
                    ddp_probs = torch.stack([probs[i + r] for r in range(worldsize)])
                else:
                    ddp_logits = torch.stack([logits[i + r] for r in range(worldsize)])
                    ddp_probs = logits_to_probs(ddp_logits, is_binary=False)
                sk_batch_result = reference_perplexity_func(ddp_probs)
                # assert for dist_sync_on_step
                if check_dist_sync_on_step:
                    assert np.allclose(batch_result.numpy(), sk_batch_result, atol=atol)
        else:
            if probs is None:
                p = logits_to_probs(logits[i], is_binary=False)
            else:
                p = probs[i]
            sk_batch_result = reference_perplexity_func(p)
            # assert for batch
            if check_batch:
                assert np.allclose(batch_result.numpy(), sk_batch_result, atol=atol)

    assert (probs is None) != (logits is None)
    # check on all batches on all ranks
    result = perplexity.compute()
    assert isinstance(result, torch.Tensor)

    if probs is None:
        probs = logits_to_probs(logits, is_binary=False)
    sk_result = reference_perplexity_func(probs)

    # assert after aggregation
    assert np.allclose(result.numpy(), sk_result, atol=atol)


class PerplexityTester(MetricTester):
    def run_class_perplexity_test(
        self,
        ddp: bool,
        probs: Optional[torch.Tensor],
        logits: Optional[torch.Tensor],
        dist_sync_on_step: bool,
        metric_args: dict = {},
        check_dist_sync_on_step: bool = True,
        check_batch: bool = True,
    ):
        """ Main method that should be used for testing class. Call this inside testing
            methods.
            Args:
                ddp: bool, if running in ddp mode or not
                probs: torch tensor with probabilities.
                logits: torch tensor with logits. This test checks that probs and logits are mutually exclusive for
                    ``Perplexity`` metric.
                dist_sync_on_step: bool, if true will synchronize metric state across
                    processes at each ``forward()``
                metric_args: dict with additional arguments used for class initialization
                check_dist_sync_on_step: bool, if true will check if the metric is also correctly
                    calculated per batch per device (and not just at the end)
                check_batch: bool, if true will check if the metric is also correctly
                    calculated across devices for each batch (and not just at the end)
        """
        if ddp:
            if sys.platform == "win32":
                pytest.skip("DDP not supported on windows")

            self.pool.starmap(
                partial(
                    _perplexity_class_test,
                    probs=probs,
                    logits=logits,
                    dist_sync_on_step=dist_sync_on_step,
                    metric_args=metric_args,
                    check_dist_sync_on_step=check_dist_sync_on_step,
                    check_batch=check_batch,
                    atol=self.atol,
                ),
                [(rank, self.poolSize) for rank in range(self.poolSize)],
            )
        else:
            _perplexity_class_test(
                0,
                1,
                probs=probs,
                logits=logits,
                dist_sync_on_step=dist_sync_on_step,
                metric_args=metric_args,
                check_dist_sync_on_step=check_dist_sync_on_step,
                check_batch=check_batch,
                atol=self.atol,
            )


def reference_loss_func(loss_sum_or_avg: torch.Tensor, num_measurements: torch.Tensor, take_avg_loss: bool):
    """
    Returns average loss for data from``loss_sum_or_avg``. This function sums all losses from ``loss_sum_or_avg`` and
    divides the sum by the sum of ``num_measurements`` elements.

    If ``take_avg_loss`` is ``True`` then ``loss_sum_or_avg[i]`` elements are mean values of ``num_measurements[i]``
    losses. In that case before computing sum of losses each element of ``loss_sum_or_avg`` is multiplied by
    corresponding element of ``num_measurements``.

    If ``num_measurements`` sum is zero then the function returns NaN tensor.

    The function is used for testing ``nemo.collections.common.metrics.GlobalAverageLossMetric`` class.

    Args:
        loss_sum_or_avg: a one dimensional float ``torch.Tensor``. Sums or mean values of loss.
        num_measurements: a one dimensional integer ``torch.Tensor``. Number of values on which sums of means in
            ``loss_sum_or_avg`` are calculated.
        take_avg_loss: if ``True`` then ``loss_sum_or_avg`` contains mean losses else ``loss_sum_or_avg`` contains
            sums of losses.
    """
    loss_sum_or_avg = loss_sum_or_avg.clone().detach()
    if take_avg_loss:
        loss_sum_or_avg *= num_measurements
    nm_sum = num_measurements.sum()
    if nm_sum.eq(0):
        return torch.tensor(float('nan'))
    return loss_sum_or_avg.sum() / nm_sum


def _loss_class_test(
    rank: int,
    worldsize: int,
    loss_sum_or_avg: Optional[torch.Tensor],
    num_measurements: Optional[torch.Tensor],
    dist_sync_on_step: bool,
    take_avg_loss: bool,
    check_dist_sync_on_step: bool = True,
    check_batch: bool = True,
    atol: float = 1e-8,
):
    """ Utility function doing the actual comparison between lightning class metric
        and reference metric.
        Args:
            rank: rank of current process
            worldsize: number of processes
            loss_sum_or_avg: a one dimensional float torch tensor with loss sums or means.
            num_measurements: a one dimensional integer torch tensor with number of values on which sums or means from
                ``loss_sum_or_avg`` were computed.
            dist_sync_on_step: bool, if true will synchronize metric state across processes at each call of the
                method :meth:`forward()`
            take_avg_loss: dict with additional arguments used for class initialization
            check_dist_sync_on_step: bool, if true will check if the metric is also correctly
                calculated per batch per device (and not just at the end)
            check_batch: bool, if true will check if the metric is also correctly
                calculated across devices for each batch (and not just at the end)
    """
    # Instantiate lightning metric
    loss_metric = GlobalAverageLossMetric(dist_sync_on_step=dist_sync_on_step, take_avg_loss=take_avg_loss)

    # verify loss works after being loaded from pickled state
    pickled_metric = pickle.dumps(loss_metric)
    loss_metric = pickle.loads(pickled_metric)
    for i in range(rank, NUM_BATCHES, worldsize):
        batch_result = loss_metric(loss_sum_or_avg[i], num_measurements[i])
        if loss_metric.dist_sync_on_step:
            if rank == 0:
                ddp_loss_sum_or_avg = torch.stack([loss_sum_or_avg[i + r] for r in range(worldsize)])
                ddp_num_measurements = torch.stack([num_measurements[i + r] for r in range(worldsize)])
                sk_batch_result = reference_loss_func(ddp_loss_sum_or_avg, ddp_num_measurements, take_avg_loss)
                # assert for dist_sync_on_step
                if check_dist_sync_on_step:
                    if sk_batch_result.isnan():
                        assert batch_result.isnan()
                    else:
                        assert np.allclose(
                            batch_result.numpy(), sk_batch_result, atol=atol
                        ), f"batch_result = {batch_result.numpy()}, sk_batch_result = {sk_batch_result}, i = {i}"
        else:
            ls = loss_sum_or_avg[i : i + 1]
            nm = num_measurements[i : i + 1]
            sk_batch_result = reference_loss_func(ls, nm, take_avg_loss)
            # assert for batch
            if check_batch:
                if sk_batch_result.isnan():
                    assert batch_result.isnan()
                else:
                    assert np.allclose(
                        batch_result.numpy(), sk_batch_result, atol=atol
                    ), f"batch_result = {batch_result.numpy()}, sk_batch_result = {sk_batch_result}, i = {i}"
    # check on all batches on all ranks
    result = loss_metric.compute()
    assert isinstance(result, torch.Tensor)
    sk_result = reference_loss_func(loss_sum_or_avg, num_measurements, take_avg_loss)

    # assert after aggregation
    if sk_result.isnan():
        assert result.isnan()
    else:
        assert np.allclose(result.numpy(), sk_result, atol=atol), f"result = {result.numpy()}, sk_result = {sk_result}"


class LossTester(MetricTester):
    def run_class_loss_test(
        self,
        ddp: bool,
        loss_sum_or_avg: torch.Tensor,
        num_measurements: torch.Tensor,
        dist_sync_on_step: bool,
        take_avg_loss: bool,
        check_dist_sync_on_step: bool = True,
        check_batch: bool = True,
    ):
        if ddp:
            if sys.platform == "win32":
                pytest.skip("DDP not supported on windows")
            self.pool.starmap(
                partial(
                    _loss_class_test,
                    loss_sum_or_avg=loss_sum_or_avg,
                    num_measurements=num_measurements,
                    dist_sync_on_step=dist_sync_on_step,
                    take_avg_loss=take_avg_loss,
                    check_dist_sync_on_step=check_dist_sync_on_step,
                    check_batch=check_batch,
                    atol=self.atol,
                ),
                [(rank, self.poolSize) for rank in range(self.poolSize)],
            )
        else:
            _loss_class_test(
                0,
                1,
                loss_sum_or_avg=loss_sum_or_avg,
                num_measurements=num_measurements,
                dist_sync_on_step=dist_sync_on_step,
                take_avg_loss=take_avg_loss,
                check_dist_sync_on_step=check_dist_sync_on_step,
                check_batch=check_batch,
                atol=self.atol,
            )