Spaces:
Runtime error
Runtime error
File size: 8,335 Bytes
0558aa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from lhotse import CutSet, MonoCut, SupervisionSegment
from lhotse.testing.dummies import dummy_recording
from omegaconf import OmegaConf
from nemo.collections.common.data.lhotse.dataloader import get_lhotse_dataloader_from_config
from nemo.collections.common.data.lhotse.text_adapters import SourceTargetTextExample
from nemo.collections.common.tokenizers import SentencePieceTokenizer
from nemo.collections.common.tokenizers.sentencepiece_tokenizer import create_spt_model
from nemo.collections.multimodal.speech_llm.data.lhotse_dataset import LhotseAudioQuestionAnswerDataset
from nemo.collections.multimodal.speech_llm.parts.utils.data_utils import PromptFormatterTextProcessing
class Identity(torch.utils.data.Dataset):
def __getitem__(self, cuts):
return cuts
@pytest.fixture
def tokenizer(capsys, tmp_path_factory):
TOKENIZER_TRAIN_TEXT = """
Example system message.
Example user message.
Example assistant message.
TEST
[INST]
[/INST]
<s>
</s>
<<SYS>>
<</SYS>>
User: Assistant:
user model
Instruct Output
\n\n
<start_of_turn> <end_of_turn>
<|
|>
<|en|> <|de|> <|fr|> <|es|> <|transcribe|> <|translate|> <|pnc|> <|nopnc|> <|startoftranscript|> <|endoftext|>
Feel free to add new tokens for your own tests!?
But know that if you do so, you may need to update the token IDs in the existing tests!
So, it might be a good idea to create a new tokenizer instead when adding new prompt formats.
"""
tmpdir = tmp_path_factory.mktemp("bpe_tokenizer")
text_path = tmpdir / "text.txt"
text_path.write_text(TOKENIZER_TRAIN_TEXT)
with capsys.disabled():
create_spt_model(
str(text_path),
vocab_size=512,
sample_size=-1,
do_lower_case=False,
output_dir=str(tmpdir),
remove_extra_whitespaces=True,
)
return SentencePieceTokenizer(str(tmpdir / "tokenizer.model"))
"""
TEST FOR AUDIO DATALOADING WITH EMMETT
"""
@pytest.fixture
def cuts():
return CutSet(
[
MonoCut(
id="ex0",
start=0,
duration=5.0,
channel=0,
supervisions=[
SupervisionSegment(
id="ex0",
recording_id="dummy-recording-0000",
start=0,
duration=5.0,
text="some transcription",
language="en",
)
],
recording=dummy_recording(0, duration=5.0, with_data=True),
custom={
"context": "<en>",
"answer": "some desired answer",
},
),
]
)
@pytest.fixture
def cuts_path(tmp_path_factory, cuts):
tmp_path = tmp_path_factory.mktemp("data")
p = tmp_path / "cuts.jsonl.gz"
pa = tmp_path / "audio"
cuts.save_audios(pa).to_file(p)
return p
def test_audio_example_with_prompt_emmett_t5(cuts_path, tokenizer):
config = OmegaConf.create(
{
"input_cfg": [
{
"type": "lhotse",
"cuts_path": cuts_path,
},
],
"prompt_format": "t5nmt",
"force_finite": True,
"shuffle": True,
"num_workers": 0,
"batch_size": 1,
"seed": 0,
"shard_seed": 0,
}
)
# First test that sampling is correct and tokenizer + prompt formatter is applied there
dl = get_lhotse_dataloader_from_config(
config=config, global_rank=0, world_size=1, dataset=Identity(), tokenizer=tokenizer
)
batches = [batch for batch in dl]
assert len(batches) == 1
b = batches[0]
assert isinstance(b, CutSet)
assert len(b) == 1
ex = b[0]
assert isinstance(ex, MonoCut)
assert ex.has_custom("context_ids")
assert torch.is_tensor(ex.context_ids)
assert tokenizer.ids_to_text(ex.context_ids) == "<en>"
assert ex.has_custom("answer_ids")
assert torch.is_tensor(ex.answer_ids)
assert tokenizer.ids_to_text(ex.answer_ids) == "some transcription"
assert ex.has_custom("input_ids")
assert torch.is_tensor(ex.input_ids)
assert tokenizer.ids_to_text(ex.input_ids) == "<en> some transcription"
# Test that speechlm dataset processes the example correctly
text_processor = PromptFormatterTextProcessing(tokenizer=tokenizer, prompt_format="t5nmt")
dataset = LhotseAudioQuestionAnswerDataset(
text_processor=text_processor,
default_context="<en>",
tokens_to_generate=0,
pad_to_max_length=False,
max_seq_length=64,
)
batch = dataset[batches[0]]
assert tokenizer.ids_to_text(batch["tokens"][0]) == "<en> some transcriptio"
assert tokenizer.ids_to_text(batch["labels"][0]) == "en> some transcription"
assert tokenizer.ids_to_text(batch["contexts"][0]) == "<en>"
assert tokenizer.ids_to_text(batch["answers"][0]) == "some transcription"
"""
TEST FOR TEXT DATALOADING WITH EMMETT
"""
@pytest.fixture
def nmt_paths(tmp_path_factory):
tmp_path = tmp_path_factory.mktemp("nmtdata")
src = tmp_path / "src.txt"
tgt = tmp_path / "tgt.txt"
q = tmp_path / "q.txt"
src.write_text("fake german")
tgt.write_text("real english")
q.write_text("<en>")
return src, tgt, q
def test_text_example_with_prompt_emmett_t5(nmt_paths, tokenizer):
src, tgt, q = nmt_paths
config = OmegaConf.create(
{
"input_cfg": [
{
"type": "txt_pair",
"source_paths": src,
"target_paths": tgt,
"source_language": "de",
"target_language": "en",
"questions_path": q,
"questions_language": "en",
},
],
"prompt_format": "t5nmt",
"force_finite": True,
"shuffle": True,
"num_workers": 0,
"batch_size": 1,
"seed": 0,
"shard_seed": 0,
}
)
# First test that sampling is correct and tokenizer + prompt formatter is applied there
dl = get_lhotse_dataloader_from_config(
config=config, global_rank=0, world_size=1, dataset=Identity(), tokenizer=tokenizer
)
batches = [batch for batch in dl]
assert len(batches) == 1
b = batches[0]
assert isinstance(b, CutSet)
assert len(b) == 1
ex = b[0]
assert isinstance(ex, SourceTargetTextExample)
assert torch.is_tensor(ex.context_ids)
assert tokenizer.ids_to_text(ex.context_ids) == "<en> fake german"
assert torch.is_tensor(ex.answer_ids)
assert tokenizer.ids_to_text(ex.answer_ids) == "real english"
assert torch.is_tensor(ex.input_ids)
assert tokenizer.ids_to_text(ex.input_ids) == "<en> fake german real english"
# Test that speechlm dataset processes the example correctly
text_processor = PromptFormatterTextProcessing(tokenizer=tokenizer, prompt_format="t5nmt")
dataset = LhotseAudioQuestionAnswerDataset(
text_processor=text_processor,
default_context="<en>",
tokens_to_generate=0,
pad_to_max_length=False,
max_seq_length=64,
)
batch = dataset[batches[0]]
assert tokenizer.ids_to_text(batch["text_input_ids"][0]) == "<en> fake german real english"
assert tokenizer.ids_to_text(batch["text_context_ids"][0]) == "<en> fake german"
assert tokenizer.ids_to_text(batch["text_answer_ids"][0]) == "real english"
|