Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| # Task 1: Speech Command Recognition | |
| ## Preparing the dataset | |
| Use the `process_speech_commands_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset. | |
| ```sh | |
| python <NEMO_ROOT>/scripts/dataset_processing/process_speech_commands_data.py \ | |
| --data_root=<absolute path to where the data should be stored> \ | |
| --data_version=<either 1 or 2, indicating version of the dataset> \ | |
| --class_split=<either "all" or "sub", indicates whether all 30/35 classes should be used, or the 10+2 split should be used> \ | |
| --rebalance \ | |
| --log | |
| ``` | |
| ## Train to convergence | |
| ```sh | |
| python speech_to_label.py \ | |
| # (Optional: --config-path=<path to dir of configs> --config-name=<name of config without .yaml>) \ | |
| model.train_ds.manifest_filepath="<path to train manifest>" \ | |
| model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \ | |
| trainer.devices=2 \ | |
| trainer.accelerator="gpu" \ | |
| strategy="ddp" \ | |
| trainer.max_epochs=200 \ | |
| exp_manager.create_wandb_logger=True \ | |
| exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-v1" \ | |
| exp_manager.wandb_logger_kwargs.project="MatchboxNet-v1" \ | |
| +trainer.precision=16 \ | |
| +trainer.amp_level=O1 # needed if using PyTorch < 1.6 | |
| ``` | |
| # Task 2: Voice Activity Detection | |
| ## Preparing the dataset | |
| Use the `process_vad_data.py` script under <NEMO_ROOT>/scripts/dataset_processing in order to prepare the dataset. | |
| ```sh | |
| python process_vad_data.py \ | |
| --out_dir=<output path to where the generated manifest should be stored> \ | |
| --speech_data_root=<path where the speech data are stored> \ | |
| --background_data_root=<path where the background data are stored> \ | |
| --rebalance_method=<'under' or 'over' of 'fixed'> \ | |
| --log | |
| (Optional --demo (for demonstration in tutorial). If you want to use your own background noise data, make sure to delete --demo) | |
| ``` | |
| ## Train to convergence | |
| ```sh | |
| python speech_to_label.py \ | |
| --config-path=<path to dir of configs e.g. "conf"> | |
| --config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \ | |
| model.train_ds.manifest_filepath="<path to train manifest>" \ | |
| model.validation_ds.manifest_filepath=["<path to val manifest>","<path to test manifest>"] \ | |
| trainer.devices=2 \ | |
| trainer.accelerator="gpu" \ | |
| strategy="ddp" \ | |
| trainer.max_epochs=200 \ | |
| exp_manager.create_wandb_logger=True \ | |
| exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \ | |
| exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \ | |
| +trainer.precision=16 \ | |
| +trainer.amp_level=O1 # needed if using PyTorch < 1.6 | |
| ``` | |
| # Task 3: Language Identification | |
| ## Preparing the dataset | |
| Use the `filelist_to_manifest.py` script under <NEMO_ROOT>/scripts/speaker_tasks in order to prepare the dataset. | |
| ``` | |
| ## Train to convergence | |
| ```sh | |
| python speech_to_label.py \ | |
| --config-path=<path to dir of configs e.g. "../conf/lang_id"> | |
| --config-name=<name of config without .yaml e.g. "titanet_large"> \ | |
| model.train_ds.manifest_filepath="<path to train manifest>" \ | |
| model.validation_ds.manifest_filepath="<path to val manifest>" \ | |
| model.train_ds.augmentor.noise.manifest_path="<path to noise manifest>" \ | |
| model.train_ds.augmentor.impulse.manifest_path="<path to impulse manifest>" \ | |
| model.decoder.num_classes=<num of languages> \ | |
| trainer.devices=2 \ | |
| trainer.max_epochs=40 \ | |
| exp_manager.create_wandb_logger=True \ | |
| exp_manager.wandb_logger_kwargs.name="titanet" \ | |
| exp_manager.wandb_logger_kwargs.project="langid" \ | |
| +exp_manager.checkpoint_callback_params.monitor="val_acc_macro" \ | |
| +exp_manager.checkpoint_callback_params.mode="max" \ | |
| +trainer.precision=16 \ | |
| ``` | |
| # Optional: Use tarred dataset to speed up data loading. Apply to both tasks. | |
| ## Prepare tarred dataset. | |
| Prepare ONE manifest that contains all training data you would like to include. Validation should use non-tarred dataset. | |
| Note that it's possible that tarred datasets impacts validation scores because it drop values in order to have same amount of files per tarfile; | |
| Scores might be off since some data is missing. | |
| Use the `convert_to_tarred_audio_dataset.py` script under <NEMO_ROOT>/scripts/speech_recognition in order to prepare tarred audio dataset. | |
| For details, please see TarredAudioToClassificationLabelDataset in <NEMO_ROOT>/nemo/collections/asr/data/audio_to_label.py | |
| python speech_to_label.py \ | |
| --config-path=<path to dir of configs e.g. "conf"> | |
| --config-name=<name of config without .yaml e.g. "matchboxnet_3x1x64_vad"> \ | |
| model.train_ds.manifest_filepath=<path to train tarred_audio_manifest.json> \ | |
| model.train_ds.is_tarred=True \ | |
| model.train_ds.tarred_audio_filepaths=<path to train tarred audio dataset e.g. audio_{0..2}.tar> \ | |
| +model.train_ds.num_worker=<num_shards used generating tarred dataset> \ | |
| model.validation_ds.manifest_filepath=<path to validation audio_manifest.json>\ | |
| trainer.devices=2 \ | |
| trainer.accelerator="gpu" \ | |
| strategy="ddp" \ \ | |
| trainer.max_epochs=200 \ | |
| exp_manager.create_wandb_logger=True \ | |
| exp_manager.wandb_logger_kwargs.name="MatchboxNet-3x1x64-vad" \ | |
| exp_manager.wandb_logger_kwargs.project="MatchboxNet-vad" \ | |
| +trainer.precision=16 \ | |
| +trainer.amp_level=O1 # needed if using PyTorch < 1.6 | |
| # Fine-tune a model | |
| For documentation on fine-tuning this model, please visit - | |
| https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/configs.html#fine-tuning-configurations | |
| # Pretrained Models | |
| For documentation on existing pretrained models, please visit - | |
| https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/speech_classification/results.html# | |
| """ | |
| import lightning.pytorch as pl | |
| import torch | |
| from omegaconf import OmegaConf | |
| from nemo.collections.asr.models import EncDecClassificationModel, EncDecSpeakerLabelModel | |
| from nemo.core.config import hydra_runner | |
| from nemo.utils import logging | |
| from nemo.utils.exp_manager import exp_manager | |
| def main(cfg): | |
| logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') | |
| trainer = pl.Trainer(**cfg.trainer) | |
| exp_manager(trainer, cfg.get("exp_manager", None)) | |
| if 'titanet' in cfg.name.lower(): | |
| model = EncDecSpeakerLabelModel(cfg=cfg.model, trainer=trainer) | |
| else: | |
| model = EncDecClassificationModel(cfg=cfg.model, trainer=trainer) | |
| # Initialize the weights of the model from another model, if provided via config | |
| model.maybe_init_from_pretrained_checkpoint(cfg) | |
| trainer.fit(model) | |
| torch.distributed.destroy_process_group() | |
| if hasattr(cfg.model, 'test_ds') and cfg.model.test_ds.manifest_filepath is not None: | |
| if trainer.is_global_zero: | |
| trainer = pl.Trainer(devices=1, accelerator=cfg.trainer.accelerator, strategy=cfg.trainer.strategy) | |
| if model.prepare_test(trainer): | |
| trainer.test(model) | |
| if __name__ == '__main__': | |
| main() # noqa pylint: disable=no-value-for-parameter | |