Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| This is a helper script to extract speaker embeddings based on manifest file | |
| Usage: | |
| python extract_speaker_embeddings.py --manifest=/path/to/manifest/file' | |
| --model_path='/path/to/.nemo/file'(optional) | |
| --embedding_dir='/path/to/embedding/directory' | |
| Args: | |
| --manifest: path to manifest file containing audio_file paths for which embeddings need to be extracted | |
| --model_path(optional): path to .nemo speaker verification model file to extract embeddings, if not passed SpeakerNet-M model would | |
| be downloaded from NGC and used to extract embeddings | |
| --embeddings_dir(optional): path to directory where embeddings need to stored default:'./' | |
| """ | |
| import json | |
| import os | |
| import pickle as pkl | |
| from argparse import ArgumentParser | |
| import numpy as np | |
| import torch | |
| from nemo.collections.asr.models.label_models import EncDecSpeakerLabelModel | |
| from nemo.collections.asr.parts.utils.speaker_utils import embedding_normalize | |
| from nemo.utils import logging | |
| def get_embeddings(speaker_model, manifest_file, batch_size=1, embedding_dir='./', device='cuda'): | |
| """ | |
| save embeddings to pickle file | |
| Args: | |
| speaker_model: NeMo <EncDecSpeakerLabel> model | |
| manifest_file: path to the manifest file containing the audio file path from which the | |
| embeddings should be extracted | |
| batch_size: batch_size for inference | |
| embedding_dir: path to directory to store embeddings file | |
| device: compute device to perform operations | |
| """ | |
| all_embs, _, _, _ = speaker_model.batch_inference(manifest_file, batch_size=batch_size, device=device) | |
| all_embs = np.asarray(all_embs) | |
| all_embs = embedding_normalize(all_embs) | |
| out_embeddings = {} | |
| with open(manifest_file, 'r', encoding='utf-8') as manifest: | |
| for i, line in enumerate(manifest.readlines()): | |
| line = line.strip() | |
| dic = json.loads(line) | |
| uniq_name = '@'.join(dic['audio_filepath'].split('/')[-3:]) | |
| out_embeddings[uniq_name] = all_embs[i] | |
| embedding_dir = os.path.join(embedding_dir, 'embeddings') | |
| if not os.path.exists(embedding_dir): | |
| os.makedirs(embedding_dir, exist_ok=True) | |
| prefix = manifest_file.split('/')[-1].rsplit('.', 1)[-2] | |
| name = os.path.join(embedding_dir, prefix) | |
| embeddings_file = name + '_embeddings.pkl' | |
| pkl.dump(out_embeddings, open(embeddings_file, 'wb')) | |
| logging.info("Saved embedding files to {}".format(embedding_dir)) | |
| def main(): | |
| parser = ArgumentParser() | |
| parser.add_argument( | |
| "--manifest", type=str, required=True, help="Path to manifest file", | |
| ) | |
| parser.add_argument( | |
| "--model_path", | |
| type=str, | |
| default='titanet_large', | |
| required=False, | |
| help="path to .nemo speaker verification model file to extract embeddings, if not passed SpeakerNet-M model would be downloaded from NGC and used to extract embeddings", | |
| ) | |
| parser.add_argument( | |
| "--batch_size", type=int, default=1, required=False, help="batch size", | |
| ) | |
| parser.add_argument( | |
| "--embedding_dir", | |
| type=str, | |
| default='./', | |
| required=False, | |
| help="path to directory where embeddings need to stored default:'./'", | |
| ) | |
| args = parser.parse_args() | |
| torch.set_grad_enabled(False) | |
| if args.model_path.endswith('.nemo'): | |
| logging.info(f"Using local speaker model from {args.model_path}") | |
| speaker_model = EncDecSpeakerLabelModel.restore_from(restore_path=args.model_path) | |
| elif args.model_path.endswith('.ckpt'): | |
| speaker_model = EncDecSpeakerLabelModel.load_from_checkpoint(checkpoint_path=args.model_path) | |
| else: | |
| speaker_model = EncDecSpeakerLabelModel.from_pretrained(model_name="titanet_large") | |
| logging.info(f"using pretrained titanet_large speaker model from NGC") | |
| device = 'cuda' | |
| if not torch.cuda.is_available(): | |
| device = 'cpu' | |
| logging.warning("Running model on CPU, for faster performance it is adviced to use atleast one NVIDIA GPUs") | |
| get_embeddings( | |
| speaker_model, args.manifest, batch_size=args.batch_size, embedding_dir=args.embedding_dir, device=device | |
| ) | |
| if __name__ == '__main__': | |
| main() | |