Spaces:
Runtime error
Runtime error
| # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import numpy as np | |
| import torch | |
| from lightning.pytorch import seed_everything | |
| from omegaconf import OmegaConf | |
| from nemo.collections.asr.data.audio_to_label import AudioToSpeechLabelDataset | |
| from nemo.collections.asr.models import EncDecSpeakerLabelModel | |
| from nemo.collections.asr.parts.features import WaveformFeaturizer | |
| from nemo.core.config import hydra_runner | |
| from nemo.utils import logging | |
| seed_everything(42) | |
| def main(cfg): | |
| logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}') | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| enrollment_manifest = cfg.data.enrollment_manifest | |
| test_manifest = cfg.data.test_manifest | |
| out_manifest = cfg.data.out_manifest | |
| sample_rate = cfg.data.sample_rate | |
| backend = cfg.backend.backend_model.lower() | |
| featurizer = WaveformFeaturizer(sample_rate=sample_rate) | |
| dataset = AudioToSpeechLabelDataset(manifest_filepath=enrollment_manifest, labels=None, featurizer=featurizer) | |
| enroll_id2label = dataset.id2label | |
| if backend == 'cosine_similarity': | |
| model_path = cfg.backend.cosine_similarity.model_path | |
| batch_size = cfg.backend.cosine_similarity.batch_size | |
| if model_path.endswith('.nemo'): | |
| speaker_model = EncDecSpeakerLabelModel.restore_from(model_path) | |
| else: | |
| speaker_model = EncDecSpeakerLabelModel.from_pretrained(model_path) | |
| enroll_embs, _, enroll_truelabels, _ = speaker_model.batch_inference( | |
| enrollment_manifest, | |
| batch_size, | |
| sample_rate, | |
| device=device, | |
| ) | |
| test_embs, _, _, _ = speaker_model.batch_inference( | |
| test_manifest, | |
| batch_size, | |
| sample_rate, | |
| device=device, | |
| ) | |
| # length normalize | |
| enroll_embs = enroll_embs / (np.linalg.norm(enroll_embs, ord=2, axis=-1, keepdims=True)) | |
| test_embs = test_embs / (np.linalg.norm(test_embs, ord=2, axis=-1, keepdims=True)) | |
| # reference embedding | |
| reference_embs = [] | |
| keyslist = list(enroll_id2label.values()) | |
| for label_id in keyslist: | |
| indices = np.where(enroll_truelabels == label_id) | |
| embedding = (enroll_embs[indices].sum(axis=0).squeeze()) / len(indices) | |
| reference_embs.append(embedding) | |
| reference_embs = np.asarray(reference_embs) | |
| scores = np.matmul(test_embs, reference_embs.T) | |
| matched_labels = scores.argmax(axis=-1) | |
| elif backend == 'neural_classifier': | |
| model_path = cfg.backend.neural_classifier.model_path | |
| batch_size = cfg.backend.neural_classifier.batch_size | |
| if model_path.endswith('.nemo'): | |
| speaker_model = EncDecSpeakerLabelModel.restore_from(model_path) | |
| else: | |
| speaker_model = EncDecSpeakerLabelModel.from_pretrained(model_path) | |
| if speaker_model.decoder.final.out_features != len(enroll_id2label): | |
| raise ValueError( | |
| "number of labels mis match. Make sure you trained or finetuned neural classifier with labels from enrollement manifest_filepath" | |
| ) | |
| _, test_logits, _, _ = speaker_model.batch_inference( | |
| test_manifest, | |
| batch_size, | |
| sample_rate, | |
| device=device, | |
| ) | |
| matched_labels = test_logits.argmax(axis=-1) | |
| with open(test_manifest, 'rb') as f1, open(out_manifest, 'w', encoding='utf-8') as f2: | |
| lines = f1.readlines() | |
| for idx, line in enumerate(lines): | |
| line = line.strip() | |
| item = json.loads(line) | |
| item['infer'] = enroll_id2label[matched_labels[idx]] | |
| json.dump(item, f2) | |
| f2.write('\n') | |
| logging.info("Inference labels have been written to {} manifest file".format(out_manifest)) | |
| if __name__ == '__main__': | |
| main() | |