subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import copy
import os
import signal
import sys
from loguru import logger
from pipecat.audio.vad.silero import SileroVADAnalyzer
from pipecat.frames.frames import EndTaskFrame
from pipecat.pipeline.pipeline import Pipeline
from pipecat.pipeline.runner import PipelineRunner
from pipecat.pipeline.task import PipelineParams, PipelineTask
from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.processors.frameworks.rtvi import RTVIAction, RTVIConfig, RTVIProcessor
from pipecat.serializers.protobuf import ProtobufFrameSerializer
from nemo.agents.voice_agent.pipecat.processors.frameworks.rtvi import RTVIObserver
from nemo.agents.voice_agent.pipecat.services.nemo.diar import NemoDiarService
from nemo.agents.voice_agent.pipecat.services.nemo.llm import get_llm_service_from_config
from nemo.agents.voice_agent.pipecat.services.nemo.stt import NemoSTTService
from nemo.agents.voice_agent.pipecat.services.nemo.tts import KokoroTTSService, NeMoFastPitchHiFiGANTTSService
from nemo.agents.voice_agent.pipecat.services.nemo.turn_taking import NeMoTurnTakingService
from nemo.agents.voice_agent.pipecat.transports.network.websocket_server import (
WebsocketServerParams,
WebsocketServerTransport,
)
from nemo.agents.voice_agent.pipecat.utils.text.simple_text_aggregator import SimpleSegmentedTextAggregator
from nemo.agents.voice_agent.utils.config_manager import ConfigManager
def setup_logging():
# Configure loguru to output to both console and file
logger.remove() # Remove default handler
logger.add(
sys.stderr,
format="<green>{time:YYYY-MM-DD HH:mm:ss.SSSS}</green> | <level>{level: <8}</level> | <cyan>{name}</cyan>:<cyan>{function}</cyan>:<cyan>{line}</cyan> - <level>{message}</level>",
level="DEBUG",
)
logger.add("bot_server.log", rotation="1 day", level="DEBUG")
setup_logging()
# Global flag for graceful shutdown
shutdown_event = asyncio.Event()
# Initialize configuration manager
config_manager = ConfigManager(
server_base_path=os.path.dirname(__file__), server_config_path=os.environ.get("SERVER_CONFIG_PATH", None)
)
server_config = config_manager.get_server_config()
logger.info(f"Server config: {server_config}")
# Access configuration parameters from ConfigManager
SAMPLE_RATE = config_manager.SAMPLE_RATE
RAW_AUDIO_FRAME_LEN_IN_SECS = config_manager.RAW_AUDIO_FRAME_LEN_IN_SECS
SYSTEM_PROMPT = config_manager.SYSTEM_PROMPT
SYSTEM_ROLE = config_manager.SYSTEM_ROLE
# Transport configuration
TRANSPORT_AUDIO_OUT_10MS_CHUNKS = config_manager.TRANSPORT_AUDIO_OUT_10MS_CHUNKS
# VAD configuration
vad_params = config_manager.get_vad_params()
# STT configuration
STT_MODEL_PATH = config_manager.STT_MODEL_PATH
STT_DEVICE = config_manager.STT_DEVICE
stt_params = config_manager.get_stt_params()
# Diarization configuration
DIAR_MODEL = config_manager.DIAR_MODEL
USE_DIAR = config_manager.USE_DIAR
diar_params = config_manager.get_diar_params()
# Turn taking configuration
TURN_TAKING_BACKCHANNEL_PHRASES_PATH = config_manager.TURN_TAKING_BACKCHANNEL_PHRASES_PATH
TURN_TAKING_MAX_BUFFER_SIZE = config_manager.TURN_TAKING_MAX_BUFFER_SIZE
TURN_TAKING_BOT_STOP_DELAY = config_manager.TURN_TAKING_BOT_STOP_DELAY
# TTS configuration
TTS_TYPE = config_manager.server_config.tts.type
TTS_MAIN_MODEL_ID = config_manager.TTS_MAIN_MODEL_ID
TTS_SUB_MODEL_ID = config_manager.TTS_SUB_MODEL_ID
TTS_DEVICE = config_manager.TTS_DEVICE
TTS_THINK_TOKENS = config_manager.TTS_THINK_TOKENS
TTS_EXTRA_SEPARATOR = config_manager.TTS_EXTRA_SEPARATOR
def signal_handler(signum, frame):
"""Handle shutdown signals gracefully"""
logger.info(f"Received signal {signum}, initiating graceful shutdown...")
shutdown_event.set()
async def run_bot_websocket_server(host: str = "0.0.0.0", port: int = 8765):
logger.info(f"Starting websocket server on {host}:{port}")
logger.info(f"Server configured to run indefinitely with no timeouts, use Ctrl+C to quit.")
# Set up signal handlers for graceful shutdown
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
logger.info("Initializing WebSocket server transport...")
logger.info("Server configured to run indefinitely with no timeouts")
"""
NO-TIMEOUT CONFIGURATION:
- session_timeout=None: Disables WebSocket session timeout
- idle_timeout=None: Disables pipeline idle timeout
- asyncio.wait_for(timeout=None): No timeout on pipeline runner
- Server will run indefinitely until manually stopped (Ctrl+C)
"""
vad_analyzer = SileroVADAnalyzer(
sample_rate=SAMPLE_RATE,
params=vad_params,
)
logger.info("VAD analyzer initialized")
ws_transport = WebsocketServerTransport(
params=WebsocketServerParams(
serializer=ProtobufFrameSerializer(),
audio_in_enabled=True,
audio_out_enabled=True,
add_wav_header=False,
vad_analyzer=vad_analyzer,
session_timeout=None, # Disable session timeout
audio_in_sample_rate=SAMPLE_RATE,
can_create_user_frames=TURN_TAKING_BACKCHANNEL_PHRASES_PATH
is None, # if backchannel phrases are disabled, we can use VAD to interrupt the bot immediately
audio_out_10ms_chunks=TRANSPORT_AUDIO_OUT_10MS_CHUNKS,
),
host=host,
port=port,
)
logger.info("Initializing STT service...")
stt = NemoSTTService(
model=STT_MODEL_PATH,
device=STT_DEVICE,
params=stt_params,
sample_rate=SAMPLE_RATE,
audio_passthrough=True,
has_turn_taking=True,
backend="legacy",
decoder_type="rnnt",
)
logger.info("STT service initialized")
if USE_DIAR:
diar = NemoDiarService(
model=DIAR_MODEL,
device=STT_DEVICE,
params=diar_params,
sample_rate=SAMPLE_RATE,
backend="legacy",
enabled=USE_DIAR,
)
logger.info("Diarization service initialized")
else:
diar = None
turn_taking = NeMoTurnTakingService(
use_vad=True,
use_diar=USE_DIAR,
max_buffer_size=TURN_TAKING_MAX_BUFFER_SIZE,
bot_stop_delay=TURN_TAKING_BOT_STOP_DELAY,
backchannel_phrases=TURN_TAKING_BACKCHANNEL_PHRASES_PATH,
)
logger.info("Turn taking service initialized")
logger.info("Initializing LLM service...")
llm = get_llm_service_from_config(server_config.llm)
logger.info("LLM service initialized")
text_aggregator = SimpleSegmentedTextAggregator(punctuation_marks=TTS_EXTRA_SEPARATOR)
if TTS_TYPE == "nemo":
tts = NeMoFastPitchHiFiGANTTSService(
fastpitch_model=TTS_MAIN_MODEL_ID,
hifigan_model=TTS_SUB_MODEL_ID,
device=TTS_DEVICE,
text_aggregator=text_aggregator,
think_tokens=TTS_THINK_TOKENS,
)
elif TTS_TYPE == "kokoro":
tts = KokoroTTSService(
voice=TTS_SUB_MODEL_ID,
device=TTS_DEVICE,
speed=config_manager.server_config.tts.speed,
text_aggregator=text_aggregator,
think_tokens=TTS_THINK_TOKENS,
)
else:
raise ValueError(f"Invalid TTS type: {TTS_TYPE}")
logger.info("TTS service initialized")
context = OpenAILLMContext(
[
{
"role": SYSTEM_ROLE,
"content": SYSTEM_PROMPT,
}
],
)
original_messages = copy.deepcopy(context.get_messages())
original_context = copy.deepcopy(context)
original_context.set_llm_adapter(llm.get_llm_adapter())
context_aggregator = llm.create_context_aggregator(context)
user_context_aggregator = context_aggregator.user()
assistant_context_aggregator = context_aggregator.assistant()
# RTVI events for Pipecat client UI
rtvi = RTVIProcessor(config=RTVIConfig(config=[]))
# Add reset action to RTVI processor
async def reset_context_handler(rtvi_processor: RTVIProcessor, service: str, arguments: dict[str, any]) -> bool:
"""Reset both user and assistant context aggregators"""
logger.info("Resetting conversation context...")
try:
user_context_aggregator.reset()
assistant_context_aggregator.reset()
user_context_aggregator.set_messages(copy.deepcopy(original_messages))
assistant_context_aggregator.set_messages(copy.deepcopy(original_messages))
text_aggregator.reset()
if diar is not None:
diar.reset()
logger.info("Conversation context reset successfully")
return True
except Exception as e:
logger.error(f"Error resetting context: {e}")
return False
reset_action = RTVIAction(
service="context",
action="reset",
result="bool",
arguments=[],
handler=reset_context_handler,
)
rtvi.register_action(reset_action)
logger.info("Setting up pipeline...")
pipeline = [
ws_transport.input(),
rtvi,
stt,
]
if USE_DIAR:
pipeline.append(diar)
pipeline.extend(
[turn_taking, user_context_aggregator, llm, tts, ws_transport.output(), assistant_context_aggregator]
)
pipeline = Pipeline(pipeline)
rtvi_text_aggregator = SimpleSegmentedTextAggregator(punctuation_marks=".!?\n")
task = PipelineTask(
pipeline,
params=PipelineParams(
allow_interruptions=True,
enable_metrics=False,
enable_usage_metrics=False,
send_initial_empty_metrics=True,
report_only_initial_ttfb=True,
idle_timeout=None, # Disable idle timeout
),
observers=[RTVIObserver(rtvi, text_aggregator=rtvi_text_aggregator)],
idle_timeout_secs=None,
cancel_on_idle_timeout=False,
)
# Track task state
task_running = True
# Setup logging again to avoid logger from being overwritten during setting up the pipeline components
setup_logging()
@rtvi.event_handler("on_client_ready")
async def on_client_ready(rtvi: RTVIProcessor):
logger.info("Pipecat client ready.")
await rtvi.set_bot_ready()
# Kick off the conversation.
try:
await task.queue_frames([user_context_aggregator.get_context_frame()])
except Exception as e:
logger.error(f"Error queuing context frame: {e}")
@ws_transport.event_handler("on_client_connected")
async def on_client_connected(transport, client):
logger.info(f"Pipecat Client connected from {client.remote_address}")
# Reset RTVI state for new connection
rtvi._client_ready = False
rtvi._bot_ready = False
@ws_transport.event_handler("on_client_disconnected")
async def on_client_disconnected(transport, client):
logger.info(f"Pipecat Client disconnected from {client.remote_address}")
# Don't cancel the task immediately - let it handle the disconnection gracefully
# The task will continue running and can accept new connections
# Only send an EndTaskFrame to clean up the current session
if task_running:
try:
await task.queue_frames([EndTaskFrame()])
except Exception as e:
# Don't log warnings for normal connection closures
if "ConnectionClosedOK" not in str(e) and "1005" not in str(e):
logger.warning(f"Error sending EndTaskFrame: {e}")
else:
logger.debug(f"Normal connection closure: {e}")
@ws_transport.event_handler("on_session_timeout")
async def on_session_timeout(transport, client):
logger.info(f"Session timeout for {client.remote_address}")
# Don't cancel the task - keep server running indefinitely
logger.info("Session timeout occurred but keeping server running")
# Note: With session_timeout=None, this handler should never be called
logger.info("Starting pipeline runner...")
try:
runner = PipelineRunner()
# Run the task until shutdown is requested
await asyncio.wait_for(runner.run(task), timeout=None) # No timeout - run indefinitely
except asyncio.TimeoutError:
logger.info("Pipeline runner timeout (should not happen with no timeout)")
except Exception as e:
logger.error(f"Pipeline runner error: {e}")
task_running = False
finally:
logger.info("Pipeline runner stopped")
if __name__ == "__main__":
asyncio.run(run_bot_websocket_server())