subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
import logging
import os
from itertools import chain
from typing import List, Literal, Optional
import torch
from lightning.pytorch.overrides.distributed import _IndexBatchSamplerWrapper
from torch.utils.data import DataLoader, Dataset
# TODO: remove? unused
def create_dataloader(
dataset: "Dataset", drop_last: bool = True, pad_samples_to_global_batch_size=False, **kwargs
) -> DataLoader:
""" """
output = DataLoader(dataset, collate_fn=dataset.collate_fn, **kwargs)
output._drop_last = drop_last # noqa: SLF001
output._pad_samples_to_global_batch_size = pad_samples_to_global_batch_size # noqa: SLF001
return output
def setup_microbatch_calculator(
global_rank: int,
micro_batch_size: int,
global_batch_size: int,
rampup_batch_size: Optional[List[int]] = None,
) -> None:
"""
Initializes the data for distributed training by setting up the microbatch calculator
based on the provided global rank and data configuration.
This function checks if the microbatch calculator has already been initialized. If it has,
the function validates that the current configuration matches the initialized settings. If the
calculator has not been initialized, it sets up a new one with the provided configuration.
Args:
global_rank (int): The global rank of the current process.
config (DataConfig): The data configuration object containing settings for global batch size,
micro batch size, data parallel size, and optional ramp-up batch size.
Raises
------
Exception: If the microbatch calculator has already been initialized with different settings.
"""
from nemo.lightning._strategy_lib import NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE
from nemo.utils import AppState
try:
from megatron.core.num_microbatches_calculator import (
ConstantNumMicroBatchesCalculator,
get_current_global_batch_size,
get_micro_batch_size,
get_num_microbatches,
init_num_microbatches_calculator,
)
MCORE_MB_CALCULATOR = True
except (ImportError, ModuleNotFoundError):
logging.warning("Megatron num_microbatches_calculator not found, using Apex version.")
from apex.transformer.microbatches import ConstantNumMicroBatches as ConstantNumMicroBatchesCalculator
from apex.transformer.pipeline_parallel.utils import (
get_current_global_batch_size,
get_micro_batch_size,
get_num_microbatches,
)
from apex.transformer.pipeline_parallel.utils import (
setup_microbatch_calculator as init_num_microbatches_calculator,
)
MCORE_MB_CALCULATOR = False
app_state = AppState()
if os.environ.get(NEMO_MEGATRON_MODEL_PARALLEL_APPSTATE_OVERRIDE, "false").lower() == "true":
init_global_rank = app_state.global_rank
else:
init_global_rank = global_rank
if MCORE_MB_CALCULATOR:
from megatron.core.num_microbatches_calculator import _GLOBAL_NUM_MICROBATCHES_CALCULATOR
if _GLOBAL_NUM_MICROBATCHES_CALCULATOR is None:
init_num_microbatches_calculator(
rank=init_global_rank,
global_batch_size=global_batch_size,
micro_batch_size=micro_batch_size,
data_parallel_size=app_state.data_parallel_size,
rampup_batch_size=rampup_batch_size,
decrease_batch_size_if_needed=False,
)
else:
if isinstance(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, ConstantNumMicroBatchesCalculator):
assert get_current_global_batch_size() == global_batch_size
assert get_micro_batch_size() == micro_batch_size
assert get_num_microbatches() == global_batch_size // (micro_batch_size * app_state.data_parallel_size)
else:
raise Exception("Microbatch calculator already initialized.")
else:
from apex.transformer.pipeline_parallel.utils import _GLOBAL_NUM_MICROBATCHES_CALCULATOR
if _GLOBAL_NUM_MICROBATCHES_CALCULATOR is None:
init_num_microbatches_calculator(
rank=init_global_rank,
global_batch_size=global_batch_size,
micro_batch_size=micro_batch_size,
data_parallel_size=app_state.data_parallel_size,
rampup_batch_size=rampup_batch_size,
decrease_batch_size_if_needed=False,
)
else:
if isinstance(_GLOBAL_NUM_MICROBATCHES_CALCULATOR, ConstantNumMicroBatchesCalculator):
assert get_current_global_batch_size() == global_batch_size
assert get_micro_batch_size() == micro_batch_size
assert get_num_microbatches() == global_batch_size // (micro_batch_size * app_state.data_parallel_size)
else:
raise Exception("Microbatch calculator already initialized.")
def add_megatron_sampler(
dataloader: DataLoader,
micro_batch_size: int,
global_batch_size: int,
rampup_batch_size: Optional[List[int]] = None,
consumed_samples: int = 0,
dataloader_type: Literal["single", "cyclic", "batch"] = "single",
drop_last: bool = True,
pad_samples_to_global_batch_size: bool = False,
dataloader_mode: Literal["train", "validation", "test", "predict"] = "train",
rank: int = 0,
world_size: int = 1,
# data_sharding: bool = False
) -> DataLoader:
"""
This function takes an existing PyTorch `DataLoader` and configures it to use a Megatron sampler.
The Megatron sampler is responsible for splitting the data into batches
during training with Megatron.
Args:
dataloader (DataLoader): The original PyTorch DataLoader to wrap.
micro_batch_size (int): The size of each micro-batch.
global_batch_size (int): The effective size of the training batch across all data parallel devices.
rampup_batch_size (Optional[List[int]]): A list of target batch sizes for a gradual
rampup schedule during training (optional).
consumed_samples (int, optional): The number of samples consumed before
starting this iteration (defaults to 0).
dataloader_type (Literal["single", "cyclic", "batch"], optional): The type of
Megatron sampler to use. Valid options are:
- "single": Uses `MegatronPretrainingSampler` for single pass data sampling.
- "cyclic": Uses `MegatronPretrainingRandomSampler` for cyclic data sampling.
- "batch": Uses `MegatronPretrainingBatchSampler` for batch sampling. This is the option to
use for fine-tuning workloads, where sequence lengths are variable between samples.
Sampling the entire global batch together ensures that sequences in a global batch are
padded to the same lengths.
Defaults to "single".
drop_last (bool, optional): Whether to drop the last incomplete batch
(defaults to True).
pad_samples_to_global_batch_size (bool, optional): Whether to pad the last incomplete
batch to the `global_batch_size` (defaults to False, only applies when
`drop_last` is False).
dataloader_mode (Literal["train", "validation", "test", "predict"]): The mode of dataloader.
Returns:
DataLoader: A new DataLoader instance with the configured Megatron sampler.
"""
if dataloader_type == 'single':
batch_sampler = MegatronPretrainingSampler(
total_samples=len(dataloader.dataset),
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
global_batch_size=global_batch_size,
rampup_batch_size=rampup_batch_size,
data_parallel_rank=rank,
data_parallel_size=world_size,
drop_last=drop_last,
pad_samples_to_global_batch_size=pad_samples_to_global_batch_size,
)
elif dataloader_type == 'cyclic':
batch_sampler = MegatronPretrainingRandomSampler(
total_samples=len(dataloader.dataset),
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
data_parallel_rank=rank,
data_parallel_size=world_size,
drop_last=drop_last,
# data_sharding=data_sharding
)
elif dataloader_type == 'batch':
from nemo.collections.common.data.data_samplers import MegatronPretrainingBatchSampler
batch_sampler = MegatronPretrainingBatchSampler(
total_samples=len(dataloader.dataset),
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
global_batch_size=global_batch_size,
data_parallel_rank=rank,
data_parallel_size=world_size,
drop_last=drop_last,
pad_samples_to_global_batch_size=not drop_last,
)
else:
raise Exception(f'{dataloader_type} dataloader type is not supported.')
if dataloader_mode in ["test", "predict"]:
batch_sampler = _IndexBatchSamplerWrapper(batch_sampler) # BatchSampler wrapper to capture its indices
return DataLoader(
dataloader.dataset,
batch_sampler=batch_sampler,
num_workers=dataloader.num_workers,
pin_memory=dataloader.pin_memory,
persistent_workers=dataloader.persistent_workers,
collate_fn=dataloader.collate_fn,
)
class WrappedDataLoader(DataLoader):
"""Wrapper around torch DataLoader which stores the dataloader mode"""
def __init__(self, mode="train", **dataloader_kwargs):
super().__init__(**dataloader_kwargs)
self.mode = mode
# TODO: Replace this with megatron.core.data.data_samplers after we upgrade
class BaseMegatronSampler:
""" """
def __init__(
self,
total_samples: int,
consumed_samples: int,
micro_batch_size: int,
data_parallel_rank: int,
data_parallel_size: int,
drop_last: bool = True,
global_batch_size: Optional[int] = None,
rampup_batch_size: Optional[list] = None,
pad_samples_to_global_batch_size: Optional[bool] = False,
) -> None:
# Sanity checks.
if total_samples <= 0:
raise RuntimeError(f"no sample to consume: {total_samples}")
if micro_batch_size <= 0:
raise RuntimeError(f"micro_batch_size size must be greater than 0, but {micro_batch_size}")
if data_parallel_size <= 0:
raise RuntimeError(f"data parallel size must be greater than 0, but {data_parallel_size}")
if data_parallel_rank >= data_parallel_size:
raise RuntimeError(
"data_parallel_rank should be smaller than data size, but "
f"{data_parallel_rank} >= {data_parallel_size}"
)
if global_batch_size is not None and rampup_batch_size is None:
if global_batch_size % (micro_batch_size * data_parallel_size) != 0:
raise RuntimeError(
f"`global_batch_size` ({global_batch_size}) is not divisible by "
f"`micro_batch_size ({micro_batch_size}) x data_parallel_size "
f"({data_parallel_size})`"
)
if pad_samples_to_global_batch_size and global_batch_size is None:
raise RuntimeError(
"`pad_samples_to_global_batch_size` can be `True` only when "
"`global_batch_size` is set to an integer value"
)
# Keep a copy of input params for later use.
self.total_samples = total_samples
self.consumed_samples = consumed_samples
self.micro_batch_size = micro_batch_size
self.data_parallel_rank = data_parallel_rank
self.micro_batch_times_data_parallel_size = self.micro_batch_size * data_parallel_size
self.drop_last = drop_last
self.global_batch_size = global_batch_size
self.pad_samples_to_global_batch_size = pad_samples_to_global_batch_size
logging.info(
f"Instantiating MegatronPretrainingSampler with total_samples: {total_samples} and"
f" consumed_samples: {consumed_samples}"
)
def __len__(self):
if self.global_batch_size is not None:
if self.drop_last:
num_global_batches = self.total_samples // self.global_batch_size
else:
num_global_batches = (self.total_samples + self.global_batch_size - 1) // self.global_batch_size
# return len of dataloader in terms of micro batches to avoid discrepancy between len of dataloader and
# num of batches fetched (as training step fetches in terms of micro batches)
return num_global_batches * (self.global_batch_size // self.micro_batch_times_data_parallel_size)
else:
return (self.total_samples - 1) // self.micro_batch_times_data_parallel_size + 1
@abc.abstractmethod
def __iter__(self): ...
class MegatronPretrainingSampler(BaseMegatronSampler):
""" """
def __init__(
self,
total_samples: int,
consumed_samples: int,
micro_batch_size: int,
data_parallel_rank: int,
data_parallel_size: int,
drop_last: bool = True,
global_batch_size: Optional[int] = None,
rampup_batch_size: Optional[list] = None,
pad_samples_to_global_batch_size: Optional[bool] = False,
):
super().__init__(
total_samples=total_samples,
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
data_parallel_rank=data_parallel_rank,
data_parallel_size=data_parallel_size,
drop_last=drop_last,
global_batch_size=global_batch_size,
rampup_batch_size=rampup_batch_size,
pad_samples_to_global_batch_size=pad_samples_to_global_batch_size,
)
if consumed_samples >= total_samples:
raise RuntimeError(f"no samples left to consume: {consumed_samples}, {total_samples}")
def get_start_end_idx(self):
""" """
start_idx = self.data_parallel_rank * self.micro_batch_size
end_idx = start_idx + self.micro_batch_size
return start_idx, end_idx
def __iter__(self):
batch = []
# Last batch will be dropped if drop_last is not set False
indices = range(self.consumed_samples, self.total_samples)
if (not self.drop_last) and self.pad_samples_to_global_batch_size:
pad_samples_num = -len(indices) % self.global_batch_size
pad_indices = range(-1, -pad_samples_num - 1, -1)
indices = chain(indices, pad_indices)
for idx in indices:
batch.append(idx)
if len(batch) == self.micro_batch_times_data_parallel_size:
start_idx, end_idx = self.get_start_end_idx()
yield batch[start_idx:end_idx]
batch = []
# Check the last partial batch and see drop_last is set
if len(batch) > 0 and not self.drop_last:
assert (
not self.pad_samples_to_global_batch_size
), "with pad_samples_to_global_batch_size all batches should be complete"
start_idx, end_idx = self.get_start_end_idx()
yield batch[start_idx:end_idx]
class MegatronPretrainingRandomSampler(BaseMegatronSampler):
""" """
def __init__(
self,
total_samples: int,
consumed_samples: int,
micro_batch_size: int,
data_parallel_rank: int,
data_parallel_size: int,
drop_last: bool = True,
global_batch_size: Optional[int] = None,
pad_samples_to_global_batch_size: Optional[bool] = False,
seed: int = 0,
) -> None:
super().__init__(
total_samples=total_samples,
consumed_samples=consumed_samples,
micro_batch_size=micro_batch_size,
data_parallel_rank=data_parallel_rank,
data_parallel_size=data_parallel_size,
drop_last=drop_last,
global_batch_size=global_batch_size,
pad_samples_to_global_batch_size=pad_samples_to_global_batch_size,
)
assert (
not pad_samples_to_global_batch_size
), "`MegatronPretrainingRandomSampler` does not support sample padding"
if (not drop_last) and self.micro_batch_times_data_parallel_size > 1:
raise RuntimeError(
"`MegatronPretrainingRandomSampler` does not support drop_last=False when "
"micro_batch_size * data_parallel_size > 1. "
"Please reduce your MBS and data parallelism to 1 if you want to use drop_last=False, "
"or switch to drop_last=True to avoid this error."
)
self.last_batch_size = self.total_samples % self.micro_batch_times_data_parallel_size
self.seed = seed
def __len__(self):
active_total_samples = self.total_samples - (self.last_batch_size if self.drop_last else 0)
num_available_samples = active_total_samples - self.consumed_samples % active_total_samples
if self.global_batch_size is not None:
if self.drop_last:
num_global_batches = num_available_samples // self.global_batch_size
else:
num_global_batches = (num_available_samples + self.global_batch_size - 1) // self.global_batch_size
# return len of dataloader in terms of micro batches to avoid discrepancy between len of dataloader and
# num of batches fetched (as training step fetches in terms of micro batches)
return num_global_batches * (self.global_batch_size // self.micro_batch_times_data_parallel_size)
else:
if self.drop_last:
return num_available_samples // self.micro_batch_times_data_parallel_size
else:
return (num_available_samples - 1) // self.micro_batch_times_data_parallel_size
def __iter__(self):
active_total_samples = self.total_samples - self.last_batch_size
self.epoch = self.consumed_samples // active_total_samples
current_epoch_samples = self.consumed_samples % active_total_samples
assert current_epoch_samples % self.micro_batch_times_data_parallel_size == 0
# data sharding and random sampling
data_parallel_size = self.micro_batch_times_data_parallel_size // self.micro_batch_size
bucket_size = (self.total_samples // self.micro_batch_times_data_parallel_size) * self.micro_batch_size
bucket_offset = current_epoch_samples // data_parallel_size
start_idx = self.data_parallel_rank * bucket_size
g = torch.Generator()
g.manual_seed(self.seed + self.epoch)
random_idx = torch.randperm(bucket_size, generator=g).tolist()
idx_range = [start_idx + x for x in random_idx[bucket_offset:]]
batch = []
# Last batch if not complete will be dropped.
for idx in idx_range:
batch.append(idx)
if len(batch) == self.micro_batch_size:
self.consumed_samples += self.micro_batch_times_data_parallel_size
yield batch
batch = []
# Check the last partial batch and see drop_last is set
if len(batch) > 0 and not self.drop_last:
yield batch