Spaces:
Runtime error
Runtime error
| # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| from nemo.utils.env_var_parsing import get_envint | |
| def is_global_rank_zero(): | |
| """Helper function to determine if the current process is global_rank 0 (the main process)""" | |
| # Try to get the pytorch RANK env var | |
| # RANK is set by torch.distributed.launch | |
| rank = get_envint("RANK", None) | |
| if rank is not None: | |
| return rank == 0 | |
| # Try to get the SLURM global rank env var | |
| # SLURM_PROCID is set by SLURM | |
| slurm_rank = get_envint("SLURM_PROCID", None) | |
| if slurm_rank is not None: | |
| return slurm_rank == 0 | |
| # Try to get the MPI global rank env var | |
| mpi_rank = get_envint("OMPI_COMM_WORLD_RANK", None) | |
| if mpi_rank is not None: | |
| return mpi_rank == 0 | |
| # if neither pytorch, SLURM nor MPI env vars are set | |
| # check NODE_RANK/GROUP_RANK and LOCAL_RANK env vars | |
| # assume global_rank is zero if undefined | |
| node_rank = get_envint("NODE_RANK", get_envint("GROUP_RANK", 0)) | |
| local_rank = get_envint("LOCAL_RANK", 0) | |
| return node_rank == 0 and local_rank == 0 | |
| def get_rank(): | |
| """Helper function that returns torch.distributed.get_rank() if DDP has been initialized otherwise it returns 0.""" | |
| if is_global_rank_zero(): | |
| return 0 | |
| else: | |
| return torch.distributed.get_rank() | |
| def get_last_rank() -> int: | |
| """Get the last rank in the distributed group""" | |
| if not torch.distributed.is_initialized(): | |
| return 0 | |
| return torch.distributed.get_world_size() - 1 | |