Spaces:
Runtime error
Runtime error
| # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Example: | |
| # mock dataset: | |
| torchrun --nproc_per_node=8 scripts/vlm/qwen2vl_finetune.py \ | |
| --devices=8 --tp_size=2 --data_type=mock | |
| # real dataset: | |
| torchrun --nproc_per_node=8 /path/to/NeMo/scripts/vlm/qwen2vl_finetune.py \ | |
| --data_type=qwen2vl \ | |
| --data_path=/path/to/datasets/train.json \ | |
| --image_folder "/path/to/dataset/images" \ | |
| --video_folder "/path/to/dataset/video" \ | |
| --num_nodes 1 \ | |
| --log_dir "/path/to/experiments/qwen2vl_finetune" \ | |
| --devices=8 \ | |
| --tp_size 2 --pp_size 1 \ | |
| --gbs 32 --mbs 1 \ | |
| --wandb_project=qwen2vl_demo \ | |
| --name=qwen2vl_finetune \ | |
| --restore_path "/path/to/experiments/qwen2vl_checkpoint" | |
| """ | |
| import argparse | |
| import torch | |
| from lightning.pytorch.loggers import WandbLogger | |
| from megatron.core.optimizer import OptimizerConfig | |
| from transformers.models.qwen2_vl.image_processing_qwen2_vl import Qwen2VLImageProcessor | |
| from nemo import lightning as nl | |
| from nemo.collections import llm, vlm | |
| from nemo.collections.common.tokenizers import AutoTokenizer | |
| from nemo.collections.vlm import Qwen2VLDataConfig | |
| from nemo.collections.vlm.qwen2vl.data.task_encoder import Qwen2VLTaskEncoder | |
| from nemo.lightning.pytorch.optim import CosineAnnealingScheduler | |
| from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule | |
| from nemo.utils.exp_manager import TimingCallback | |
| def main(args): | |
| # pylint: disable=C0115,C0116 | |
| # Global and micro batch sizes | |
| gbs = args.gbs | |
| mbs = args.mbs | |
| max_steps = args.max_steps | |
| SIZE_INFO_MAP = { | |
| "2B": {"hf_model_name": "Qwen/Qwen2-VL-2B-Instruct", "llmconfig_class": llm.Qwen2Config1P5B}, | |
| "7B": {"hf_model_name": "Qwen/Qwen2-VL-7B-Instruct", "llmconfig_class": llm.Qwen2Config7B}, | |
| } | |
| model_size = "2B" | |
| hf_model_name, llm_config_class = ( | |
| SIZE_INFO_MAP[model_size]["hf_model_name"], | |
| SIZE_INFO_MAP[model_size]["llmconfig_class"], | |
| ) | |
| max_sequence_length = args.max_sequence_length | |
| tokenizer = AutoTokenizer(hf_model_name) | |
| image_processor = Qwen2VLImageProcessor() | |
| if args.data_type == "qwen2vl": | |
| # Data configuration | |
| data_config = Qwen2VLDataConfig( | |
| image_folder=args.image_folder, | |
| video_folder=args.video_folder, | |
| conv_template="qwen2vl", | |
| image_process_mode="square", | |
| ) | |
| # Data module setup | |
| data = vlm.Qwen2VLPreloadedDataModule( | |
| paths=args.data_path, | |
| model_version="qwen2-vl", | |
| data_config=data_config, | |
| seq_length=max_sequence_length, | |
| decoder_seq_length=None, | |
| global_batch_size=gbs, | |
| micro_batch_size=mbs, | |
| tokenizer=tokenizer, | |
| image_processor=image_processor, | |
| num_workers=1, | |
| ) | |
| elif args.data_type == "energon": | |
| from nemo.collections.multimodal.data.energon import EnergonMultiModalDataModule | |
| # Initialize the data module | |
| use_packed_sequence = False | |
| data = EnergonMultiModalDataModule( | |
| path=args.data_path, | |
| tokenizer=tokenizer, | |
| image_processor=image_processor, | |
| seq_length=max_sequence_length, | |
| micro_batch_size=mbs, | |
| global_batch_size=gbs, | |
| num_workers=1, | |
| task_encoder=Qwen2VLTaskEncoder( | |
| tokenizer=tokenizer, | |
| image_processor=image_processor, | |
| max_padding_length=int(max_sequence_length * 0.9), | |
| ), | |
| packing_buffer_size=200 if use_packed_sequence else None, | |
| ) | |
| elif args.data_type == "mock": | |
| data = vlm.Qwen2VLMockDataModule( | |
| seq_length=max_sequence_length, | |
| global_batch_size=gbs, | |
| micro_batch_size=mbs, | |
| tokenizer=tokenizer, # for mock data, we generate random token directly, here tokenizer could be none | |
| image_processor=image_processor, | |
| num_workers=1, | |
| ) | |
| else: | |
| raise ValueError(f"Data type {args.data_type} not supported") | |
| # Submodules configurations | |
| language_transformer_config = llm_config_class( | |
| seq_length=max_sequence_length, | |
| ) | |
| vision_transformer_config = vlm.Qwen2VLVisionConfig() | |
| vision_projection_config = vlm.MultimodalProjectorConfig( | |
| projector_type=args.projector_type, | |
| input_size=vision_transformer_config.ffn_hidden_size, | |
| hidden_size=language_transformer_config.hidden_size, | |
| ffn_hidden_size=vision_transformer_config.ffn_hidden_size, | |
| ) | |
| # Qwen2VL model configuration | |
| qwen2vl_config = vlm.Qwen2VLConfig( | |
| language_transformer_config=language_transformer_config, | |
| vision_transformer_config=vision_transformer_config, | |
| vision_projection_config=vision_projection_config, | |
| language_model_from_pretrained=args.language_model_path, | |
| freeze_language_model=False, | |
| freeze_vision_model=True, | |
| ) | |
| model = vlm.Qwen2VLModel(qwen2vl_config, model_version="qwen2-vl", tokenizer=data.tokenizer) | |
| from megatron.core.distributed import DistributedDataParallelConfig | |
| # Training strategy setup | |
| strategy = nl.MegatronStrategy( | |
| tensor_model_parallel_size=args.tp_size, | |
| pipeline_model_parallel_size=args.pp_size, | |
| encoder_pipeline_model_parallel_size=args.encoder_pp_size, | |
| pipeline_dtype=torch.bfloat16, | |
| sequence_parallel=args.enable_sp, | |
| ddp=DistributedDataParallelConfig( | |
| check_for_nan_in_grad=True, | |
| grad_reduce_in_fp32=True, | |
| overlap_grad_reduce=True, | |
| overlap_param_gather=True, | |
| average_in_collective=True, | |
| ), | |
| ckpt_load_strictness="log_all", | |
| ) | |
| # Checkpoint callback setup | |
| checkpoint_callback = nl.ModelCheckpoint( | |
| save_last=True, | |
| monitor="reduced_train_loss", | |
| save_optim_on_train_end=False, | |
| save_top_k=2, | |
| every_n_train_steps=1000, | |
| dirpath=args.log_dir, | |
| ) | |
| # Trainer setup | |
| trainer = nl.Trainer( | |
| num_nodes=args.num_nodes, | |
| devices=args.devices, | |
| max_steps=max_steps, | |
| accelerator="gpu", | |
| strategy=strategy, | |
| plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"), | |
| callbacks=[checkpoint_callback, TimingCallback()], | |
| val_check_interval=gbs, | |
| limit_val_batches=0.0, | |
| log_every_n_steps=1, | |
| num_sanity_val_steps=0, | |
| ) | |
| # Logger setup | |
| nemo_logger = nl.NeMoLogger( | |
| log_dir=args.log_dir, | |
| name=args.name, | |
| wandb=WandbLogger(project=args.wandb_project, name=args.name) if args.wandb_project is not None else None, | |
| ) | |
| # Auto resume setup | |
| resume = nl.AutoResume( | |
| resume_if_exists=True, | |
| resume_ignore_no_checkpoint=True, | |
| resume_from_directory=args.log_dir, | |
| restore_config=nl.RestoreConfig(path=args.restore_path) if args.restore_path is not None else None, | |
| ) | |
| # Optimizer and scheduler setup | |
| opt_config = OptimizerConfig( | |
| optimizer='adam', | |
| lr=args.lr, | |
| adam_beta1=0.9, | |
| adam_beta2=0.95, | |
| use_distributed_optimizer=True, | |
| bf16=True, | |
| ) | |
| sched = CosineAnnealingScheduler( | |
| max_steps=trainer.max_steps, | |
| warmup_steps=0, | |
| constant_steps=1000, | |
| min_lr=1.0e-07, | |
| ) | |
| opt = MegatronOptimizerModule(opt_config, sched) | |
| # PEFT setup | |
| if args.peft == 'lora': | |
| peft = vlm.peft.LoRA( | |
| target_modules=[ | |
| "linear_qkv", | |
| "linear_proj", | |
| "linear_fc1", | |
| "linear_fc2", | |
| ] | |
| ) | |
| else: | |
| peft = None | |
| llm.finetune( | |
| model=model, | |
| data=data, | |
| trainer=trainer, | |
| peft=peft, | |
| log=nemo_logger, | |
| optim=opt, | |
| resume=resume, | |
| ) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="QWEN2VL Model Training Script") | |
| # Argument parsing | |
| parser.add_argument("--data_type", type=str, required=False, default="mock", help="mock | qwen2vl | energon") | |
| parser.add_argument("--data_path", type=str, required=False, default=None, help="Path to the dataset JSON file") | |
| parser.add_argument("--image_folder", type=str, required=False, default=None, help="Path to the image folder") | |
| parser.add_argument( | |
| "--video_folder", | |
| type=str, | |
| required=False, | |
| default=None, | |
| help="Path to the video folder, if not provided, use image_folder", | |
| ) | |
| parser.add_argument( | |
| "--log_dir", type=str, required=False, default="/results", help="Directory for logging and checkpoints" | |
| ) | |
| parser.add_argument( | |
| "--language_model_path", type=str, required=False, default=None, help="Path to the pretrained language model" | |
| ) | |
| parser.add_argument( | |
| "--restore_path", type=str, required=False, default=None, help="Path to restore model from checkpoint" | |
| ) | |
| parser.add_argument("--devices", type=int, required=False, default=1) | |
| parser.add_argument("--num_nodes", type=int, required=False, default=1) | |
| parser.add_argument("--max_steps", type=int, required=False, default=5190) | |
| parser.add_argument("--tp_size", type=int, required=False, default=1) | |
| parser.add_argument("--pp_size", type=int, required=False, default=1) | |
| parser.add_argument("--encoder_pp_size", type=int, required=False, default=0) | |
| parser.add_argument("--projector_type", type=str, required=False, default="mcore_mlp") | |
| parser.add_argument("--name", type=str, required=False, default="qwen2vl_finetune") | |
| parser.add_argument("--peft", type=str, default='none', help="none | lora") | |
| parser.add_argument("--wandb_project", type=str, required=False, default=None) | |
| parser.add_argument("--gbs", type=int, required=False, default=64, help="Global batch size") | |
| parser.add_argument("--mbs", type=int, required=False, default=2, help="Micro batch size") | |
| parser.add_argument("--lr", type=float, required=False, default=2.0e-06, help="Learning rate") | |
| parser.add_argument('--enable_sp', action='store_true', help="enable sequence parallel") | |
| parser.add_argument( | |
| "--max_sequence_length", type=int, required=False, default=4096, help="Maximum sequence length" | |
| ) | |
| args = parser.parse_args() | |
| main(args) | |