subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os.path
from typing import Any, Dict, Union
from unittest.mock import patch
import lightning.pytorch as pl
import pytest
import torch
from lightning.pytorch import Callback, Trainer
from lightning.pytorch.utilities.exceptions import MisconfigurationException
from lightning.pytorch.utilities.types import STEP_OUTPUT
from omegaconf import DictConfig, OmegaConf
from nemo.collections.common.callbacks import EMA
from nemo.collections.common.callbacks.ema import EMAOptimizer
from nemo.core import ModelPT
from nemo.utils.exp_manager import exp_manager
DEVICE_CAPABILITY = None
if torch.cuda.is_available():
DEVICE_CAPABILITY = torch.cuda.get_device_capability()
@pytest.fixture(autouse=True, scope="module")
def _mock_onelogger_update_config():
with patch('nemo.lightning.callback_group.CallbackGroup.update_config', return_value=None):
yield
def extract_ema_weights(pl_module, trainer):
ema_callback = [x for x in trainer.callbacks if isinstance(x, EMA)][0]
ema_callback.swap_model_weights(trainer)
weights = extract_weights(pl_module)
ema_callback.swap_model_weights(trainer)
return weights
def extract_weights(pl_module):
return [w.detach().clone() for w in pl_module.parameters()]
class RandomDataset(torch.utils.data.Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
class ExampleModel(ModelPT):
def __init__(self, *args, **kwargs):
cfg = OmegaConf.structured({})
super().__init__(cfg)
self.l1 = torch.nn.modules.Linear(in_features=32, out_features=32)
self.bn = torch.nn.BatchNorm1d(32)
def train_dataloader(self):
dataset = RandomDataset(32, 16)
return torch.utils.data.DataLoader(dataset, batch_size=2)
def val_dataloader(self):
dataset = RandomDataset(32, 16)
return torch.utils.data.DataLoader(dataset, batch_size=2)
def test_dataloader(self):
dataset = RandomDataset(32, 16)
dl = torch.utils.data.DataLoader(dataset, batch_size=2)
self._test_names = ['test_{}_'.format(idx) for idx in range(len(dl))]
return dl
def forward(self, batch):
return self.l1(self.bn(batch)).sum()
def training_step(self, batch, batch_idx):
return self(batch)
def validation_step(self, batch, batch_idx):
loss = self(batch)
self.validation_step_outputs.append(loss)
return loss
def test_step(self, batch, batch_idx):
loss = self(batch)
self.test_step_outputs.append(loss)
return loss
def configure_optimizers(self):
return torch.optim.SGD(self.parameters(), lr=1e-3)
def list_available_models(self):
pass
def setup_training_data(self, train_data_config: Union[DictConfig, Dict]):
pass
def setup_validation_data(self, val_data_config: Union[DictConfig, Dict]):
pass
def setup_test_data(self, val_data_config: Union[DictConfig, Dict]):
pass
def on_validation_epoch_end(self):
self.log("val_loss", torch.stack(self.validation_step_outputs).mean())
self.validation_step_outputs.clear() # free memory
class TestEMAConfig:
@pytest.mark.unit
def test_ema_value(self):
with pytest.raises(MisconfigurationException, match="between 0 and 1"):
EMA(decay=2)
@pytest.mark.unit
@pytest.mark.run_only_on('GPU')
def test_ema_saved_state(self, tmpdir, caplog):
"""Test to ensure that when we re-load the EMA callback, it loads the EMA weights correctly."""
temp_path = os.path.join(tmpdir, 'saved_state')
class TerminateCallback(Callback):
def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self.saved_ema_weights = extract_ema_weights(pl_module, trainer)
self.pl_module_weights = extract_weights(pl_module)
raise SystemExit
model = ExampleModel()
terminate_callback = TerminateCallback()
trainer = Trainer(
max_epochs=2,
limit_val_batches=1,
limit_train_batches=16,
logger=False,
val_check_interval=0.5,
enable_checkpointing=False,
accelerator='gpu',
devices=1,
callbacks=[terminate_callback],
)
exp_manager(
trainer,
{
"ema": {"enable": True},
"explicit_log_dir": str(temp_path),
"checkpoint_callback_params": {"filename": f"{{epoch}}-{{step}}"},
},
)
with pytest.raises(SystemExit):
trainer.fit(model=model)
resume_path = os.path.join(temp_path, 'checkpoints/epoch=0-step=8.ckpt')
model = ExampleModel()
class CheckStateCallback(Callback):
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
weights = extract_weights(pl_module)
for x, y in zip(weights, terminate_callback.pl_module_weights):
assert torch.allclose(x.cpu(), y.cpu())
current_ema_weights = extract_ema_weights(pl_module, trainer)
for x, y in zip(current_ema_weights, terminate_callback.saved_ema_weights):
assert torch.allclose(x.cpu(), y.cpu())
for optimizer in trainer.optimizers:
assert isinstance(optimizer, EMAOptimizer)
assert optimizer.current_step == 8
trainer = Trainer(
max_epochs=2,
limit_val_batches=0,
limit_train_batches=16,
logger=False,
enable_checkpointing=False,
accelerator='gpu',
devices=1,
)
exp_manager(
trainer,
{
"ema": {"enable": True},
"explicit_log_dir": str(temp_path),
"checkpoint_callback_params": {"filename": f"{{epoch}}-{{step}}"},
},
)
# add the callback after the exp manager has made modifications.
trainer.callbacks.append(CheckStateCallback())
trainer.fit(model, ckpt_path=resume_path)
# ensure we can resume from the EMA weights
ema_path = os.path.join(temp_path, 'checkpoints/epoch=0-step=8-EMA.ckpt')
trainer = Trainer(
max_epochs=1,
limit_val_batches=0,
limit_train_batches=1,
logger=False,
enable_checkpointing=False,
accelerator='gpu',
devices=1,
)
exp_manager(
trainer,
{
"ema": {"enable": True},
"explicit_log_dir": str(temp_path),
"checkpoint_callback_params": {"filename": f"{{epoch}}-{{step}}"},
},
)
trainer.fit(model, ckpt_path=ema_path)
# ensure that we warn when the EMA weights do not exist
os.remove(ema_path)
trainer = Trainer(
max_epochs=1,
limit_val_batches=0,
limit_train_batches=1,
logger=False,
enable_checkpointing=False,
accelerator='gpu',
devices=1,
)
exp_manager(
trainer,
{
"ema": {"enable": True, "validate_original_weights": True},
"explicit_log_dir": str(temp_path),
"checkpoint_callback_params": {"filename": f"{{epoch}}-{{step}}"},
},
)
with pytest.raises(
MisconfigurationException, match="Unable to find the associated EMA weights when re-loading"
):
trainer.fit(model, ckpt_path=resume_path)
@pytest.mark.unit
@pytest.mark.run_only_on('GPU')
def test_exp_manager_ema_weights(self, tmpdir):
"""Test to ensure that the exp manager adds the EMA callback, and we save an additional EMA checkpoint."""
tmp_path = tmpdir / "exp_manager_test"
model = ExampleModel()
trainer = Trainer(max_epochs=1, enable_checkpointing=False, logger=False, accelerator='gpu', devices=1)
exp_manager(
trainer,
{
"ema": {"enable": True, "validate_original_weights": True},
"explicit_log_dir": str(tmp_path),
"checkpoint_callback_params": {"filename": f"{{epoch}}-{{step}}"},
},
)
assert any(isinstance(callback, EMA) for callback in trainer.callbacks)
trainer.fit(model)
ema_weights = extract_ema_weights(model, trainer)
assert os.path.exists(tmp_path / "checkpoints/epoch=0-step=8.ckpt")
ema_path = tmp_path / "checkpoints/epoch=0-step=8-EMA.ckpt"
assert os.path.exists(ema_path)
duplicate_model = ExampleModel.load_from_checkpoint(str(ema_path))
for saved_weight, ema_weight in zip(duplicate_model.state_dict().values(), ema_weights):
assert torch.allclose(saved_weight.cpu(), ema_weight.cpu())
@pytest.mark.unit
def test_exp_manager_ema_weights_topk(self, tmpdir):
"""Test to ensure that EMA correctly ensures we only keep topk checkpoints."""
tmp_path = tmpdir / "exp_manager_test"
model = ExampleModel()
save_top_k = 3
trainer = Trainer(max_epochs=10, enable_checkpointing=False, logger=False, devices=1)
exp_manager(
trainer,
{
"ema": {"enable": True},
"explicit_log_dir": str(tmp_path),
"checkpoint_callback_params": {"save_top_k": save_top_k},
},
)
trainer.fit(model)
# we save 3 checkpoints for the model, 3 accompanied EMA weights, the last checkpoint and nemo model.
assert len(os.listdir(tmp_path / "checkpoints/")) == (save_top_k + 1) * 2 + 1
@pytest.mark.unit
def test_exp_manager_ema_weights_topk_resume(self, tmpdir):
"""Test to ensure that we always keep top_k checkpoints, even after resuming."""
tmp_path = tmpdir / "exp_manager_test"
model = ExampleModel()
save_top_k = 3
trainer = Trainer(max_epochs=10, enable_checkpointing=False, logger=False, devices=1)
exp_manager(
trainer,
{
"ema": {"enable": True},
"explicit_log_dir": str(tmp_path),
"checkpoint_callback_params": {"save_top_k": save_top_k},
},
)
trainer.fit(model)
# we save 3 checkpoints for the model, 3 accompanied EMA weights, the last checkpoint and nemo model.
assert len(os.listdir(tmp_path / "checkpoints/")) == (save_top_k + 1) * 2 + 1
# reduce the top_k number when resuming, we should see only 2 top_k checkpoints now (one is deleted).
save_top_k = 2
trainer = Trainer(max_epochs=10, enable_checkpointing=False, logger=False, devices=1)
exp_manager(
trainer,
{
"ema": {"enable": True},
"explicit_log_dir": str(tmp_path),
"resume_if_exists": True,
"checkpoint_callback_params": {"save_top_k": save_top_k},
},
)
trainer.fit(model)
# we save 2 checkpoints for the model, 2 accompanied EMA weights, the last checkpoint and nemo model.
assert len(os.listdir(tmp_path / "checkpoints/")) == (save_top_k + 1) * 2 + 1
class TestEMATrain:
@pytest.mark.unit
@pytest.mark.parametrize(
"precision",
[
32,
16,
pytest.param(
"bf16",
marks=pytest.mark.skipif(
not DEVICE_CAPABILITY or DEVICE_CAPABILITY[0] < 8,
reason='bfloat16 is not supported on this device',
),
),
],
)
@pytest.mark.parametrize("accumulate_grad_batches", [1, 2])
@pytest.mark.parametrize("validate_original_weights", [True, False])
@pytest.mark.run_only_on('GPU')
def test_ema_run_cuda(
self,
test_data_dir,
precision,
accumulate_grad_batches,
validate_original_weights,
tmpdir,
):
self.run_training_test(
accumulate_grad_batches=accumulate_grad_batches,
validate_original_weights=validate_original_weights,
accelerator='gpu',
precision=precision,
tmpdir=tmpdir,
)
@pytest.mark.unit
@pytest.mark.parametrize("accumulate_grad_batches", [1, 2])
@pytest.mark.parametrize("validate_original_weights", [True, False])
def test_ema_run_cpu(self, test_data_dir, accumulate_grad_batches, validate_original_weights, tmpdir):
self.run_training_test(
accumulate_grad_batches=accumulate_grad_batches,
validate_original_weights=validate_original_weights,
accelerator='cpu',
precision=32,
tmpdir=tmpdir,
)
def run_training_test(self, accumulate_grad_batches, validate_original_weights, accelerator, precision, tmpdir):
pl.seed_everything(123)
model = ExampleModel()
trainer = Trainer(
max_epochs=1,
precision=precision,
limit_train_batches=10,
limit_val_batches=10,
logger=False,
accumulate_grad_batches=accumulate_grad_batches,
num_sanity_val_steps=0,
enable_model_summary=False,
enable_checkpointing=False,
accelerator=accelerator,
devices=1,
)
exp_manager(
trainer,
{
"ema": {"enable": True, "validate_original_weights": validate_original_weights, "decay": 0.999},
"explicit_log_dir": str(tmpdir),
"checkpoint_callback_params": {"filename": f"{{epoch}}-{{step}}"},
},
)
# add the check callback after the exp manager has made modifications.
trainer.callbacks.append(EMAAssertCallback())
trainer.callbacks.insert(0, EMAValidationAssertCallback())
trainer.fit(model=model, val_dataloaders=model.train_dataloader())
@pytest.mark.unit
def test_ema_run_with_save_best_model(self, tmpdir):
"""Test to ensure that we save the model correctly when save best model is set to True."""
tmp_path = tmpdir / "exp_manager_test"
model = ExampleModel()
trainer = Trainer(max_epochs=1, enable_checkpointing=False, logger=False, devices=1, limit_train_batches=1)
exp_manager(
trainer,
{
"ema": {"enable": True},
"explicit_log_dir": str(tmp_path),
"checkpoint_callback_params": {"save_best_model": True},
},
)
trainer.fit(model)
class EMAAssertCallback(Callback):
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
model_weights = extract_weights(pl_module)
self.ema_weights = extract_ema_weights(pl_module, trainer)
for x, y in zip(model_weights, self.ema_weights):
assert torch.allclose(x, y)
def on_train_batch_end(
self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int
) -> None:
if (batch_idx + 1) % trainer.accumulate_grad_batches != 0:
# skip assertion as ema weights are not updated.
return
ema_callback = [x for x in trainer.callbacks if isinstance(x, EMA)][0]
decay = ema_callback.decay
expected_ema_weights = []
new_weights = extract_weights(pl_module)
for ema_weight, new_weight in zip(self.ema_weights, new_weights):
expected_ema_weight = ema_weight * decay
expected_ema_weight += new_weight * (1 - decay)
expected_ema_weights.append(expected_ema_weight)
ema_weights = extract_ema_weights(pl_module, trainer)
for actual_ema_weight, expected_ema_weight in zip(ema_weights, expected_ema_weights):
assert torch.allclose(actual_ema_weight, expected_ema_weight)
self.ema_weights = expected_ema_weights
class EMAValidationAssertCallback(Callback):
def on_validation_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
ema_callback = [x for x in trainer.callbacks if isinstance(x, EMA)][0]
self._original_weights = extract_weights(pl_module)
self._ema_weights = extract_ema_weights(pl_module, trainer)
# call original EMA function
super().on_validation_start(trainer, pl_module)
if not ema_callback.validate_original_weights:
if ema_callback._ema_initialized:
# check model weights are now EMA weights
for ema_weights, module_weights in zip(self._ema_weights, extract_weights(pl_module)):
torch.allclose(ema_weights, module_weights)
def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
ema_callback = [x for x in trainer.callbacks if isinstance(x, EMA)][0]
if not ema_callback.validate_original_weights:
model_weights = extract_weights(pl_module)
if ema_callback._ema_initialized:
for orig_weights, module_weights in zip(self._original_weights, model_weights):
torch.allclose(orig_weights.cpu(), module_weights.cpu())