# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from megatron.core.datasets.megatron_tokenizer import MegatronLegacyTokenizer as MegatronTokenizer class NullTokenizer(MegatronTokenizer): """ Synthetic tokenizer for performance benchmarking and debugging Args: vocab_size: vocabulary size for embedding """ def __init__(self, vocab_size): super().__init__(None, vocab_size=vocab_size) self._vocab_size_without_eod = int(vocab_size) self._eod_id = self._vocab_size_without_eod def tokenize(self, text): return [int(x) for x in text.split(' ')] def detokenize(self, ids): text = [str(x) for x in ids] return ' '.join(text) def offsets(self, ids: list[int], text: str) -> list[int]: offsets, start_idx = [], 0 for id_ in ids: offsets.append(start_idx) start_idx += 1 + len(str(id_)) return offsets @property def vocab_size(self): return self._vocab_size_without_eod + 1 @property def vocab(self): raise NotImplementedError @property def inv_vocab(self): raise NotImplementedError @property def cls(self): return -1 @property def sep(self): return -1 @property def mask(self): return -1 @property def eod(self): return self._eod_id @property def additional_special_tokens_ids(self): return None