# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os.path from typing import Iterable, List, Optional, Union import numpy import vllm.envs as envs import wrapt from vllm import RequestOutput, SamplingParams from vllm.config import ( CacheConfig, DeviceConfig, LoadConfig, LoadFormat, LoRAConfig, ObservabilityConfig, ParallelConfig, SchedulerConfig, VllmConfig, ) from vllm.executor.ray_utils import initialize_ray_cluster from vllm.lora.request import LoRARequest from vllm.v1.core.sched.scheduler import Scheduler as V1Scheduler from vllm.v1.engine.llm_engine import LLMEngine from nemo.deploy import ITritonDeployable from nemo.deploy.utils import cast_output from nemo.export.utils import convert_lora_nemo_to_canonical, prepare_directory_for_export from nemo.export.vllm.model_config import NemoModelConfig from nemo.export.vllm.model_loader import NemoModelLoader LOGGER = logging.getLogger("NeMo") @wrapt.decorator def noop_decorator(func): """Used as batch if pytriton is not supported""" def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper batch = noop_decorator use_pytriton = True try: from pytriton.decorators import batch from pytriton.model_config import Tensor except Exception: use_pytriton = False class vLLMExporter(ITritonDeployable): """ The vLLMExporter class implements conversion from a Nemo checkpoint format to something compatible with vLLM, loading the model in vLLM, and binding that model to a Triton server. Example: from nemo.export.vllm_exporter import vLLMExporter from nemo.deploy import DeployPyTriton exporter = vLLMExporter() exporter.export( nemo_checkpoint='/path/to/checkpoint.nemo', model_dir='/path/to/temp_dir', model_type='llama', ) server = DeployPyTriton( model=exporter, triton_model_name='LLAMA', ) server.deploy() server.serve() """ def __init__(self): self.request_id = 0 assert envs.VLLM_USE_V1, "Only vLLM V1 is supported" def export( self, nemo_checkpoint: str, model_dir: str, model_type: str, device: str = 'auto', tensor_parallel_size: int = 1, pipeline_parallel_size: int = 1, max_model_len: Optional[int] = None, lora_checkpoints: Optional[List[str]] = None, dtype: str = 'auto', seed: int = 0, log_stats: bool = True, weight_storage: str = 'auto', gpu_memory_utilization: float = 0.9, quantization: Optional[str] = None, delete_existing_files: bool = True, ): """ Exports the Nemo checkpoint to vLLM and initializes the engine. Args: nemo_checkpoint (str): path to the nemo checkpoint. model_dir (str): path to a temporary directory to store weights and the tokenizer model. The temp dir may persist between subsequent export operations, in which case converted weights may be reused to speed up the export. model_type (str): type of the model, such as "llama", "mistral", "mixtral". Needs to be compatible with transformers.AutoConfig. device (str): type of the device to use by the vLLM engine. Supported values are "auto", "cuda", "cpu", "neuron". tensor_parallel_size (int): tensor parallelism. pipeline_parallel_size (int): pipeline parallelism. Values over 1 are not currently supported by vLLM. max_model_len (int): model context length. lora_checkpoints List[str]: paths to LoRA checkpoints. dtype (str): data type for model weights and activations. Possible choices: auto, half, float16, bfloat16, float, float32 "auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models. seed (int): random seed value. log_stats (bool): enables logging inference performance statistics by vLLM. weight_storage (str): controls how converted weights are stored: "file" - always write weights into a file inside 'model_dir', "memory" - always do an in-memory conversion, "cache" - reuse existing files if they are newer than the nemo checkpoint, "auto" - use "cache" for multi-GPU runs and "memory" for single-GPU runs. gpu_memory_utilization (float): The fraction of GPU memory to be used for the model executor, which can range from 0 to 1. quantization (str): quantization method that is used to quantize the model weights. Possible choices are None (weights not quantized, default) and "fp8". delete_existing_files (bool): if True, deletes all the files in model_dir. """ prepare_directory_for_export(model_dir, delete_existing_files=delete_existing_files) # Pouplate the basic configuration structures device_config = DeviceConfig(device) assert quantization in {None, 'fp8'} model_config = NemoModelConfig( nemo_checkpoint, model_dir, model_type, tokenizer_mode='auto', dtype=dtype, seed=seed, revision=None, code_revision=None, tokenizer_revision=None, max_model_len=max_model_len, quantization=quantization, quantization_param_path=None, enforce_eager=False, ) if model_config.nemo_model_config.get("fp8", False): LOGGER.warning( "NeMo FP8 checkpoint detected, but exporting FP8 quantized engines is not supported for vLLM." ) parallel_config = ParallelConfig( pipeline_parallel_size=pipeline_parallel_size, tensor_parallel_size=tensor_parallel_size ) # vllm/huggingface doesn't like the absense of config file. Place config in load dir. if model_config.model and not os.path.exists(os.path.join(model_config.model, 'config.json')): with open(os.path.join(model_config.model, 'config.json'), "w") as f: json.dump(model_config.hf_text_config.to_dict(), f, indent=2) # Dynamic online FP8 quantization currently does not support in-memory conversion [TODO] if quantization is not None and weight_storage in {'auto', 'memory'}: LOGGER.warning('Setting weight_storage = "file" for FP8 quantization') weight_storage = 'file' # See if we have an up-to-date safetensors file safetensors_file = os.path.join(model_config.model, 'model.safetensors') safetensors_file_valid = os.path.exists(safetensors_file) and os.path.getmtime( safetensors_file ) > os.path.getmtime(nemo_checkpoint) # Decide how we're going to convert the weights if weight_storage == 'auto': if parallel_config.distributed_executor_backend is not None: save_weights = not safetensors_file_valid inmemory_weight_conversion = False else: save_weights = False inmemory_weight_conversion = True elif weight_storage == 'cache': save_weights = not safetensors_file_valid inmemory_weight_conversion = False elif weight_storage == 'file': save_weights = True inmemory_weight_conversion = False elif weight_storage == 'memory': save_weights = False inmemory_weight_conversion = True else: raise ValueError(f'Unsupported value for weight_storage: "{weight_storage}"') # Convert the weights ahead-of-time, if needed if save_weights: NemoModelLoader.convert_and_store_nemo_weights(model_config, safetensors_file) elif not inmemory_weight_conversion: LOGGER.info(f'Using cached weights in {safetensors_file}') # TODO: these values are the defaults from vllm.EngineArgs. cache_config = CacheConfig( block_size=16, gpu_memory_utilization=gpu_memory_utilization, swap_space=4, cache_dtype='auto', sliding_window=model_config.get_sliding_window(), ) # TODO: these values are the defaults from vllm.EngineArgs. scheduler_config = SchedulerConfig( max_num_batched_tokens=None, max_num_seqs=256, # Note: max_model_len can be derived by model_config if the input value is None max_model_len=model_config.max_model_len, num_lookahead_slots=0, delay_factor=0.0, enable_chunked_prefill=False, scheduler_cls=V1Scheduler, ) load_config = LoadConfig( load_format=NemoModelLoader if inmemory_weight_conversion else LoadFormat.SAFETENSORS, download_dir=None, model_loader_extra_config=None, ) # Convert the LoRA checkpoints to vLLM compatible format and derive the configuration structure lora_config = self._prepare_lora_checkpoints( model_dir=model_dir, lora_checkpoints=lora_checkpoints, dtype=model_config.dtype ) # Initialize the cluster and specify the executor class. if parallel_config.distributed_executor_backend == "ray": initialize_ray_cluster(parallel_config) from vllm.v1.executor.ray_distributed_executor import RayDistributedExecutor executor_class = RayDistributedExecutor elif parallel_config.distributed_executor_backend == "mp": from vllm.v1.executor.multiproc_executor import MultiprocExecutor executor_class = MultiprocExecutor else: assert parallel_config.distributed_executor_backend == "uni" or parallel_config.world_size == 1 from vllm.v1.executor.abstract import UniProcExecutor executor_class = UniProcExecutor # Initialize the engine self.engine = LLMEngine( vllm_config=VllmConfig( model_config=model_config, cache_config=cache_config, parallel_config=parallel_config, scheduler_config=scheduler_config, device_config=device_config, load_config=load_config, lora_config=lora_config, observability_config=ObservabilityConfig(), ), executor_class=executor_class, log_stats=log_stats, ) def _prepare_lora_checkpoints( self, model_dir: str, lora_checkpoints: Optional[List[str]], dtype: str ) -> LoRAConfig: self.lora_checkpoints = [] if not lora_checkpoints: return None index = 0 max_lora_rank = 0 for nemo_file in lora_checkpoints: if not os.path.isfile(nemo_file): raise FileNotFoundError(f"LoRA checkpoint file '{nemo_file} does not exist'") hf_lora_dir = os.path.join(model_dir, f'lora_{index}') LOGGER.info(f"Converting LoRA checkpoint '{nemo_file}' into '{hf_lora_dir}'...") _, lora_config = convert_lora_nemo_to_canonical(nemo_file, hf_lora_dir, hf_format=True) self.lora_checkpoints.append(hf_lora_dir) rank = lora_config['peft']['lora_tuning']['adapter_dim'] max_lora_rank = max(max_lora_rank, rank) index += 1 return LoRAConfig(max_lora_rank=max_lora_rank, max_loras=len(self.lora_checkpoints), lora_dtype=dtype) def _add_request_to_engine( self, prompt: str, max_output_len: int, temperature: float = 1.0, top_k: int = 1, top_p: float = 0.0, lora_uid: Optional[int] = None, ) -> str: if top_p <= 0.0: top_p = 1.0 sampling_params = SamplingParams( max_tokens=max_output_len, temperature=temperature, top_k=int(top_k), top_p=top_p ) if lora_uid is not None and lora_uid >= 0 and lora_uid < len(self.lora_checkpoints): lora_request = LoRARequest( lora_name=f'LoRA_{lora_uid}', lora_int_id=lora_uid + 1, lora_local_path=self.lora_checkpoints[lora_uid] ) else: lora_request = None request_id = str(self.request_id) self.request_id += 1 self.engine.add_request(request_id, prompt, sampling_params, lora_request=lora_request) return request_id def _forward_regular(self, request_ids: List[str]): responses = [None] * len(request_ids) finished = [False] * len(request_ids) while not all(finished): request_outputs: List[RequestOutput] = self.engine.step() for request_output in request_outputs: if not request_output.finished: continue try: request_index = request_ids.index(request_output.request_id) except ValueError: continue finished[request_index] = request_output.finished output_text = request_output.outputs[-1].text responses[request_index] = output_text return [[response] for response in responses] def _forward_streaming(self, request_ids: List[str]): responses = [None] * len(request_ids) finished = [False] * len(request_ids) while not all(finished): request_outputs: List[RequestOutput] = self.engine.step() for request_output in request_outputs: try: request_index = request_ids.index(request_output.request_id) except ValueError: continue finished[request_index] = request_output.finished output_text = request_output.outputs[-1].text responses[request_index] = output_text yield [[response] for response in responses] def _add_triton_request_to_engine(self, inputs: numpy.ndarray, index: int) -> str: if 'lora_uids' in inputs: lora_uid = int(numpy.char.decode(inputs['lora_uids'][index][0], encoding="utf-8")) else: lora_uid = None return self._add_request_to_engine( prompt=inputs['prompts'][index][0].decode('UTF-8'), max_output_len=inputs['max_output_len'][index][0], temperature=inputs['temperature'][index][0], top_k=inputs['top_k'][index][0], top_p=inputs['top_p'][index][0], lora_uid=lora_uid, ) @property def get_triton_input(self): inputs = ( Tensor(name="prompts", shape=(-1,), dtype=bytes), Tensor(name="max_output_len", shape=(-1,), dtype=numpy.int_, optional=True), Tensor(name="top_k", shape=(-1,), dtype=numpy.int_, optional=True), Tensor(name="top_p", shape=(-1,), dtype=numpy.single, optional=True), Tensor(name="temperature", shape=(-1,), dtype=numpy.single, optional=True), Tensor(name="lora_uids", shape=(-1,), dtype=bytes, optional=True), Tensor(name="output_generation_logits", shape=(-1,), dtype=numpy.bool_, optional=True), Tensor(name="output_context_logits", shape=(-1,), dtype=numpy.bool_, optional=True), ) return inputs @property def get_triton_output(self): outputs = (Tensor(name="outputs", shape=(-1,), dtype=bytes),) return outputs @batch def triton_infer_fn(self, **inputs: numpy.ndarray): """ This function is used to perform inference on a batch of prompts. """ request_ids = [] num_requests = len(inputs["prompts"]) for index in range(num_requests): request_id = self._add_triton_request_to_engine(inputs, index) request_ids.append(request_id) responses = self._forward_regular(request_ids) responses = [r[0] for r in responses] output_tensor = cast_output(responses, numpy.bytes_) return {'outputs': output_tensor} @batch def triton_infer_fn_streaming(self, **inputs: numpy.ndarray): """ This function is used to perform streaming inference. """ request_ids = [] num_requests = len(inputs["prompts"]) for index in range(num_requests): request_id = self._add_triton_request_to_engine(inputs, index) request_ids.append(request_id) for responses in self._forward_streaming(request_ids): responses = [r[0] for r in responses] output_tensor = cast_output(responses, numpy.bytes_) yield {'outputs': output_tensor} # Mimic the TensorRTLLM exporter's forward function, even though we don't support many of its features. def forward( self, input_texts: List[str], max_output_len: int = 64, top_k: int = 1, top_p: float = 0.0, temperature: float = 1.0, stop_words_list: Optional[List[str]] = None, bad_words_list: Optional[List[str]] = None, no_repeat_ngram_size: Optional[int] = None, task_ids: Optional[List[str]] = None, lora_uids: Optional[List[str]] = None, prompt_embeddings_table=None, prompt_embeddings_checkpoint_path: Optional[str] = None, streaming: bool = False, output_log_probs: bool = False, output_generation_logits: bool = False, output_context_logits: bool = False, ) -> Union[List[List[str]], Iterable[List[List[str]]]]: """ The forward function performs LLM evaluation on the provided array of prompts with other parameters shared, and returns the generated texts. If 'streaming' is True, the output texts are returned incrementally with a generator: one token appended to each output at a time. If 'streaming' is false, the final output texts are returned as a single list of responses. """ if stop_words_list is not None and stop_words_list != []: raise NotImplementedError("stop_words_list is not supported") if bad_words_list is not None and bad_words_list != []: raise NotImplementedError("bad_words_list is not supported") if no_repeat_ngram_size is not None: raise NotImplementedError("no_repeat_ngram_size is not supported") if task_ids is not None and task_ids != []: raise NotImplementedError("task_ids is not supported") if prompt_embeddings_table is not None: raise NotImplementedError("prompt_embeddings_table is not supported") if prompt_embeddings_checkpoint_path is not None: raise NotImplementedError("prompt_embeddings_checkpoint_path is not supported") if output_log_probs: raise NotImplementedError("output_log_probs is not supported") if output_generation_logits: raise NotImplementedError("output_generation_logits is not supported") if output_context_logits: raise NotImplementedError("output_context_logits is not supported") request_ids = [] for index in range(len(input_texts)): prompt = input_texts[index] if lora_uids is not None and index < len(lora_uids): lora_uid = lora_uids[index] else: lora_uid = None request_id = self._add_request_to_engine( prompt=prompt, max_output_len=max_output_len, temperature=temperature, top_k=top_k, top_p=top_p, lora_uid=lora_uid, ) request_ids.append(request_id) if streaming: return self._forward_streaming(request_ids) else: return self._forward_regular(request_ids)