# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # CUDAGraphCallback is a full iteration CUDA graph callback designed for # models with PyTorch Lightning first, this has been tested with Stable # Diffusion right now. # # Prerequisites for this callback: # 1. Capturable: user has to make sure (almost) all the host & device # synchronizations are removed, some of the syncs regarding logging # of metrics introduced by PyTorch Lightning itself have been removed # by this callback. This ensures the graph can be captured. # 2. Topology: user has to make sure there's no dynamic control flow # within the iteration. Please use APEX alternatives for building # blocks that contain dynamic control flow, e.g. gradient clipping. # Otherwise the captured graph can run, but may raise silent failure, # e.g. NaN loss. # 3. Parameters: user has to make sure pointers involved in the graph # capturing range don't change across iterations. In this case users # have to ensure that data is copied to static tensors. Otherwise this # can also lead to silent failure. import os import time from dataclasses import dataclass from types import MethodType from typing import Any, Dict import lightning.pytorch as pl import torch from lightning.pytorch import LightningModule from lightning.pytorch.callbacks import Callback from lightning.pytorch.loops.optimization.automatic import ClosureResult from lightning.pytorch.trainer.connectors.logger_connector.result import _ResultCollection, _ResultMetric from lightning.pytorch.utilities import CombinedLoader, rank_zero_info from lightning.pytorch.utilities.signature_utils import is_param_in_hook_signature from lightning.pytorch.utilities.types import STEP_OUTPUT from torch.nn.parallel import DistributedDataParallel __all__ = ["CUDAGraphCallback"] def struct_copy_one(src): if isinstance(src, tuple): return tuple(struct_copy_one(i) for i in src) elif isinstance(src, list): return list(struct_copy_one(i) for i in src) elif isinstance(src, dict): return {k: struct_copy_one(src[k]) for k in src} elif isinstance(src, torch.Tensor): return src.clone().detach().cuda() else: return src def struct_copy_two(tgt, src): if isinstance(src, tuple): raise Exception(f"Unsupported copy for tuple yet: {type(src)}") elif isinstance(src, list): for i in range(len(src)): if isinstance(src[i], (tuple, list, dict, torch.Tensor)): struct_copy_two(tgt[i], src[i]) else: tgt[i] = src[i] elif isinstance(src, dict): for k in src: if isinstance(src[k], (tuple, list, dict, torch.Tensor)): struct_copy_two(tgt[k], src[k]) else: tgt[k] = src[k] elif isinstance(src, torch.Tensor): tgt.copy_(src, non_blocking=True) else: raise Exception(f"Expect top-level as container type but got: {type(src)}") class StaticBufferLoader: """Load data to static buffers.""" def __init__(self, loader): self.loader = loader self.stream = torch.cuda.Stream() self.static = None def __iter__(self): for inputs in self.loader: if self.static is None: with torch.cuda.stream(self.stream): self.static = struct_copy_one(inputs) with torch.cuda.stream(self.stream): struct_copy_two(self.static, inputs) torch.cuda.current_stream().wait_stream(self.stream) yield self.static def __len__(self): return len(self.loader) def get_lr(lr_scheduler): lrs = lr_scheduler.__orig_get_lr__() if not hasattr(lr_scheduler, "static_lrs"): lr_scheduler.static_lrs = lrs for i in range(len(lrs)): lr_scheduler.static_lrs[i].copy_(lrs[i]) return lr_scheduler.static_lrs def zero_grad(optimizer, *args, **kwargs): # We invoke zero_grad before graph capturing. if torch.cuda.is_current_stream_capturing(): rank_zero_info("CUDAGraphCallback: set optimizer.zero_grad as nop during graph capturing.") else: optimizer.__orig_zero_grad__(*args, **kwargs) def to_tensor(self, value, name): # Log metrics in PyTorch Lightning often invokes CPU & GPU synchronizations. Here # we implement smart metrics to avoid those synchronizations. # Refer to: https://github.com/Lightning-AI/pytorch-lightning/blob/2.0.7/src/lightning/pytorch/core/module.py#L615 value = value.clone().detach() if isinstance(value, torch.Tensor) else torch.tensor(value) if not torch.numel(value) == 1: raise ValueError( f"`self.log({name}, {value})` was called, but the tensor must have a single element." f" You can try doing `self.log({name}, {value}.mean())`" ) value = value.squeeze() return value def get_optimizer_step(state): def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_closure=None, ) -> None: # Not all optimizer supports set_to_none. if not hasattr(optimizer, "support_set_to_none"): optimizer.support_set_to_none = is_param_in_hook_signature( optimizer.zero_grad, "set_to_none", explicit=True ) if optimizer.support_set_to_none: zero_grad_kwargs = {"set_to_none": True} else: zero_grad_kwargs = {} if 0 <= state.current_iteration < state.capture_iteration or state.capture_iteration < 0: state.stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(state.stream): optimizer.zero_grad(**zero_grad_kwargs) self.__orig_optimizer_step__( epoch, batch_idx, optimizer, optimizer_closure=optimizer_closure, ) torch.cuda.current_stream().wait_stream(state.stream) if state.current_iteration == state.capture_iteration: torch.cuda.synchronize() # Sleep for one second to let environment stable time.sleep(1) rank_zero_info("CUDAGraphCallback: capturing CUDA graph for module %s.", self.__class__.__name__) with torch.cuda.graph(state.graph, stream=state.stream, capture_error_mode="global"): # PyTorch CUDA graph doc for whole-network capturing mentions: # # Sets grads to None before capture, so backward() will create # .grad attributes with allocations from the graph's private pool # # But it's not necessary, and it can lead to CUDA kernels inside # `zero_grad()` being not captured. optimizer.zero_grad(**zero_grad_kwargs) self.__orig_optimizer_step__( epoch, batch_idx, optimizer, optimizer_closure=optimizer_closure, ) torch.cuda.synchronize() # Graph replay and reconstruct missing result if state.current_iteration >= state.capture_iteration >= 0: state.graph.replay() optimizer_closure._result = ClosureResult.from_training_step_output(state.output) # If something is not capturable, try to put it there, e.g. `self.log()`. if hasattr(self, "non_cuda_graph_capturable"): self.non_cuda_graph_capturable() state.current_iteration += 1 return optimizer_step def get_training_step(state): def training_step(self, batch): results = self.__orig_training_step__(batch) if state.output is None: state.output = struct_copy_one(results) # Copy results to static buffer to rebuild states required by PL. with torch.no_grad(): struct_copy_two(state.output, results) return results return training_step def get_amp_autocast_init(state): def amp_autocast_init(self, *args, **kwargs): if "cache_enabled" not in kwargs: kwargs["cache_enabled"] = False if state.current_iteration == 0: rank_zero_info("CUDAGraphCallback: disable autocast cache.") return self.__orig_init__(*args, **kwargs) return amp_autocast_init def get_ddp_init(state): def init(self, *args, **kwargs): rank_zero_info("CUDAGraphCallback: init DDP on side stream.") with torch.cuda.stream(state.stream): self.__orig_init__(*args, **kwargs) return init @dataclass class CUDAGraphState: current_iteration: int = 0 capture_iteration: int = -1 # -1 to disable stream: torch.cuda.Stream = None graph: torch.cuda.CUDAGraph = None output: Any = None # static forward output class CUDAGraphCallback(Callback): """Full iteration CUDA graph callback. Dataloader and LR scheduler are not included in the CUDA graph with this callback. """ def __init__(self, capture_iteration=-1): super().__init__() # Required by CUDA graph with DDP # Ref: https://pytorch.org/docs/stable/notes/cuda.html#usage-with-distributeddataparallel if 0 <= capture_iteration <= 11: raise Exception("Warmup must run at least 11 DDP-enabled eager iterations before capture.") if torch.distributed.is_initialized(): raise Exception("CUDAGraphCallback should be initialized before process group.") os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "0" self.state = CUDAGraphState(capture_iteration=capture_iteration) def setup(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None: """Called when fit, validate, test, predict, or tune begins.""" if self.state.capture_iteration < 0: return # Hack to avoid CUDA graph issue with AMP, PyTorch Lightning doesn't support # changing autocast arguments for now. # https://github.com/pytorch/pytorch/blob/v1.13.1/torch/cuda/graphs.py#L234 torch.autocast.__orig_init__ = torch.autocast.__init__ torch.autocast.__init__ = get_amp_autocast_init(self.state) # Before full-backward capture, DDP must be constructed in a side-stream context. # We've merged the change that init DDP on side stream to PyTorch Lightning V2, # but not all user defined strategy init DDP on side stream. DistributedDataParallel.__orig_init__ = DistributedDataParallel.__init__ DistributedDataParallel.__init__ = get_ddp_init(self.state) def teardown(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", stage: str) -> None: """Called when fit, validate, test, predict, or tune ends.""" if self.state.capture_iteration < 0: return torch.autocast.__init__ = torch.autocast.__orig_init__ del torch.autocast.__orig_init__ DistributedDataParallel.__init__ = DistributedDataParallel.__orig_init__ del DistributedDataParallel.__orig_init__ def on_fit_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when fit begins.""" if self.state.capture_iteration < 0: return if is_param_in_hook_signature(pl_module.training_step, "dataloader_iter", explicit=True): raise Exception( "Found `dataloader_iter` argument in the `training_step`. This is " "not supported by full iteration CUDA graph capturing yet since " "dataloader will be within the CUDA graph capturing range.\n" "Try to change `dataloader_iter` to `batch` and remove " "`next(dataloader_iter)` from `training_step`." ) # Now that CUDA device has been set, we can init stream and graph now self.state.stream = torch.cuda.Stream() self.state.graph = torch.cuda.CUDAGraph() def on_fit_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when fit ends.""" if self.state.capture_iteration < 0: return def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train begins.""" if self.state.capture_iteration < 0: return # Ensure training dataloader loads data to static buffer dataloader = trainer.fit_loop._combined_loader._iterables assert isinstance( dataloader, torch.utils.data.dataloader.DataLoader ), f"Expect Dataloader type but got {type(dataloader)}" static_loader = StaticBufferLoader(dataloader) _mode = trainer.fit_loop._combined_loader._mode combined_loader = CombinedLoader(static_loader, mode=_mode) trainer.fit_loop.__orig_combined_loader__ = trainer.fit_loop._combined_loader trainer.fit_loop._combined_loader = combined_loader trainer.fit_loop._data_fetcher.setup(trainer.fit_loop._combined_loader) iter(trainer.fit_loop._data_fetcher) # Warn if `optimizer.zero_grad()` invoked during graph capturing for optimizer in trainer.optimizers: assert isinstance(optimizer, torch.optim.Optimizer), f"Expect Optimizer type but got {type(optimizer)}" optimizer.__orig_zero_grad__ = optimizer.zero_grad optimizer.zero_grad = MethodType(zero_grad, optimizer) # Ensure LR scheduler writes to static buffer # We don't include LR scheduler in the full CUDA graph for now since # its overhead is very small. for config in trainer.lr_scheduler_configs: assert isinstance( config.scheduler, torch.optim.lr_scheduler._LRScheduler ), f"Expect _LRScheduler type but got {type(config.scheduler)}" config.scheduler.__orig_get_lr__ = config.scheduler.get_lr config.scheduler.get_lr = MethodType(get_lr, config.scheduler) # Use smart metrics to avoid syncs LightningModule.__orig_to_tensor__ = LightningModule._LightningModule__to_tensor LightningModule._LightningModule__to_tensor = to_tensor # Save model outputs to static buffer for PL states reconstruct pl_module.__orig_training_step__ = pl_module.training_step training_step = get_training_step(self.state) pl_module.training_step = MethodType(training_step, pl_module) # Capture CUDA graph from model forward propagation to optimizer step pl_module.__orig_optimizer_step__ = pl_module.optimizer_step optimizer_step = get_optimizer_step(self.state) pl_module.optimizer_step = MethodType(optimizer_step, pl_module) def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train ends.""" if self.state.capture_iteration < 0: return trainer.fit_loop._combined_loader = trainer.fit_loop.__orig_combined_loader__ trainer.fit_loop._data_fetcher.setup(trainer.fit_loop._combined_loader) iter(trainer.fit_loop._data_fetcher) del trainer.fit_loop.__orig_combined_loader__ for optimizer in trainer.optimizers: optimizer.zero_grad = optimizer.__orig_zero_grad__ del optimizer.__orig_zero_grad__ for config in trainer.lr_scheduler_configs: config.scheduler.get_lr = config.scheduler.__orig_get_lr__ del config.scheduler.__orig_get_lr__ LightningModule._LightningModule__to_tensor = LightningModule.__orig_to_tensor__ del LightningModule.__orig_to_tensor__ pl_module.training_step = pl_module.__orig_training_step__ del pl_module.__orig_training_step__ pl_module.optimizer_step = pl_module.__orig_optimizer_step__ del pl_module.__orig_optimizer_step__ def on_train_epoch_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train epoch begins.""" pass def on_train_epoch_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: """Called when the train epoch ends. To access all batch outputs at the end of the epoch, either: 1. Implement `training_epoch_end` in the `LightningModule` and access outputs via the module OR 2. Cache data across train batch hooks inside the callback implementation to post-process in this hook. """ pass def on_train_batch_start( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", batch: Any, batch_idx: int ) -> None: """Called when the train batch begins.""" pass def on_train_batch_end( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", outputs: STEP_OUTPUT, batch: Any, batch_idx: int ) -> None: """Called when the train batch ends. Note: The value ``outputs["loss"]`` here will be the normalized value w.r.t ``accumulate_grad_batches`` of the loss returned from ``training_step``. """ pass def on_save_checkpoint( self, trainer: "pl.Trainer", pl_module: "pl.LightningModule", checkpoint: Dict[str, Any] ) -> None: r""" Called when saving a checkpoint to give you a chance to store anything else you might want to save. Args: trainer: the current :class:`~lightning.pytorch.trainer.Trainer` instance. pl_module: the current :class:`~lightning.pytorch.core.module.LightningModule` instance. checkpoint: the checkpoint dictionary that will be saved. """ # Since we've add bound method to optimizer and lr_scheduler, it can lead to more # CUDA tensors passed to consumer process unexpectedly. if "optimizer_states" in checkpoint: for optimizer_state in checkpoint["optimizer_states"]: for k in list(optimizer_state.keys()): v = optimizer_state[k] if isinstance(v, MethodType) and hasattr(v, "__self__"): del optimizer_state[k] if "lr_schedulers" in checkpoint: for lr_scheduler in checkpoint["lr_schedulers"]: for k in list(lr_scheduler.keys()): v = lr_scheduler[k] if isinstance(v, MethodType) and hasattr(v, "__self__"): del lr_scheduler[k]