# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import multiprocessing import os import pickle import shutil import tarfile import time from argparse import ArgumentParser from glob import glob from multiprocessing import Pool from pathlib import Path from typing import Optional import numpy as np import pandas as pd SHAPES = { 'prompt_embeds': (77, 2048), 'pooled_prompt_embeds': (1280,), 'latents_256': (4, 32, 32), } def convert_single_parquet_to_tar(parquet_file): pf = pd.read_parquet(parquet_file) tmp_folder = Path(parquet_file.split('.')[0] + '-tmp-pickle-files') os.makedirs(tmp_folder, exist_ok=True) tar_file = Path(args.output_folder) / os.path.basename(parquet_file).replace('parquet', 'tar') with tarfile.open(tar_file, 'w') as f: tmp_pickle_files = [] for i in range(len(pf.index)): data = pf.iloc[i] info = dict() for key, shape in SHAPES.items(): info[key] = np.frombuffer(data[key], dtype=np.float32).reshape(shape) tmp_pickle_filename = f'{i}.pickle' pickle.dump(info, open(tmp_folder / tmp_pickle_filename, 'wb')) f.add(tmp_folder / tmp_pickle_filename, tmp_pickle_filename) tmp_pickle_files.append(tmp_pickle_filename) shutil.rmtree(tmp_folder) def generate_wdinfo(tar_folder: str, chunk_size: int, output_path: Optional[str]): if not output_path: return tar_files = [] for fname in glob(os.path.join(tar_folder, '*.tar')): # only glob one level of folder structure because we only write basename to the tar files if os.path.getsize(fname) > 0 and not os.path.exists(f"{fname}.INCOMPLETE"): tar_files.append(os.path.basename(fname)) data = {'tar_files': sorted(tar_files), 'chunk_size': chunk_size, 'total_key_count': len(tar_files) * chunk_size} with open(output_path, 'wb') as f: pickle.dump(data, f) print("Generated", output_path) if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--parquet_folder', type=str, default='data/parquet') parser.add_argument('--output_folder', type=str, default='data/output') parser.add_argument('--num_process', type=int, default=-1) parser.add_argument('--num_files', type=int, default=-1) args = parser.parse_args() PROFILE = True if PROFILE: shutil.rmtree(args.output_folder) os.makedirs(args.output_folder, exist_ok=True) parquets = glob(f'{args.parquet_folder}/*.parquet') if args.num_files > 0: parquets = parquets[: args.num_files] args.num_files = len(parquets) print(f'Processing {args.num_files} files.') if args.num_process <= 0: args.num_process = min(len(parquets), multiprocessing.cpu_count()) print(f'Converting using {args.num_process} processes.') assert args.num_process <= args.num_files t0 = time.time() with Pool(processes=args.num_process) as pool: pool.map(convert_single_parquet_to_tar, parquets) t1 = time.time() if PROFILE: print("====== Summary ======") print(f"{args.num_process} processes and {args.num_files} files.") print(f"Total time {t1-t0:.2f}") print(f"Time per file {(t1-t0)/len(parquets):.2f}") generate_wdinfo(args.output_folder, chunk_size=5000, output_path=os.path.join(args.output_folder, 'wdinfo.pkl'))