# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os.path import basename, splitext import nemo_run as run from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.collections.vlm.recipes.neva_llama3_8b import finetune_recipe from nemo.lightning.run.plugins import NsysPlugin from ..argument_parser import parse_additional_slurm_params, parse_cli_args from ..executors import slurm_executor from ..helpers import ( args_sanity_check, build_perf_env_plugin, get_user_configs, set_exp_logging_configs, set_primary_perf_configs, ) def override_recipe_configs( args: str, num_nodes: int, mbs: int, gbs: int, tp_size: int, pp_size: int, cp_size: int, vp_size: int, ep_size: int, enable_cuda_graphs: bool, ): """ NeVA (HF CLIP-ViT-L + llama3 8b) finetune recipe aimed at achieving best possible performance. NOTE: Use fp8 precision training with caution. It might not give desirable results. """ recipe = finetune_recipe(performance_mode=True) recipe = set_primary_perf_configs( recipe, "pre_train", num_nodes, args.gpus_per_node, mbs, gbs, args.max_steps, tp_size, pp_size, cp_size, vp_size, ep_size, enable_cuda_graphs=enable_cuda_graphs, compute_dtype=args.compute_dtype, fp8_recipe=args.fp8_recipe, use_mcore_fsdp=args.use_mcore_fsdp, use_fsdp_double_buffer=args.use_fsdp_double_buffer, use_user_buffer_registration=args.use_user_buffer_registration, ) recipe = set_exp_logging_configs( recipe, "pre_train", "vlm", "neva_llama3", args.tensorboard, args.wandb, args.wandb_prj_name, args.wandb_job_name, ) recipe.data.tokenizer = run.Config( get_nmt_tokenizer, library="null", model_name="NullTokenizer", vocab_size=128256 ) return recipe if __name__ == "__main__": args = parse_cli_args().parse_args() args_sanity_check(args) # Parse additional SLURM parameters if provided additional_slurm_params = None if hasattr(args, 'additional_slurm_params') and args.additional_slurm_params: additional_slurm_params = parse_additional_slurm_params(args.additional_slurm_params) kwargs = get_user_configs(args.gpu.lower(), "pre_train", "neva_llama3", "8b", args) num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, _, enable_cuda_graphs = kwargs[:10] recipe = override_recipe_configs( args, num_nodes, mbs, gbs, tp_size, pp_size, cp_size, vp_size, ep_size, enable_cuda_graphs ) exp_config = f"{num_nodes}nodes_tp{tp_size}_pp{pp_size}_cp{cp_size}_vp{vp_size}_{mbs}mbs_{gbs}gbs" exp_name = f"{splitext(basename(__file__))[0]}_{args.compute_dtype}_{exp_config}" executor = slurm_executor( args.gpu.lower(), args.account, args.partition, args.log_dir, num_nodes, args.gpus_per_node, args.time_limit, args.container_image, custom_mounts=args.custom_mounts, custom_env_vars={}, hf_token=args.hf_token, nemo_home=args.nemo_home, wandb_key=args.wandb_key, additional_slurm_params=additional_slurm_params, ) plugins = [build_perf_env_plugin(args, pp_size=pp_size)] if args.enable_nsys: plugins.append(NsysPlugin(start_step=5, end_step=6)) with run.Experiment(exp_name) as exp: exp.add( recipe, executor=executor, name=exp_name, plugins=plugins, ) if not args.dryrun: exp.run(sequential=True, detach=args.detach) else: exp.dryrun()