# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from pathlib import Path from nemo.collections import vlm from nemo.collections.llm import import_ckpt HF_MODEL_ID_TO_NEMO_CLASS = { "llava-hf/llava-1.5-7b-hf": vlm.LlavaModel, "llava-hf/llava-1.5-13b-hf": vlm.LlavaModel, "meta-llama/Llama-3.2-11B-Vision": vlm.MLlamaModel, "meta-llama/Llama-3.2-90B-Vision": vlm.MLlamaModel, "meta-llama/Llama-3.2-11B-Vision-Instruct": vlm.MLlamaModel, "meta-llama/Llama-3.2-90B-Vision-Instruct": vlm.MLlamaModel, "OpenGVLab/InternViT-300M-448px-V2_5": vlm.InternViTModel, "google/siglip-base-patch16-224": vlm.SigLIPViTModel, "OpenGVLab/InternViT-6B-448px-V2_5": vlm.InternViTModel, "openai/clip-vit-large-patch14": vlm.CLIPViTModel, } if __name__ == '__main__': parser = argparse.ArgumentParser(description="Import NeMo checkpoint from Hugging Face format.") parser.add_argument( "--input_name_or_path", type=str, required=True, help="Hugging Face model id or path to the Hugging Face checkpoint directory.", ) parser.add_argument( "--output_path", type=str, default=None, help="Path to save the converted NeMo version Hugging Face checkpoint directory.", ) parser.add_argument( "--nemo_class", type=str, default=None, help="If input is a local checkpoint path, specify the corresponding NeMo model class (e.g., 'vlm.LlavaModel').", ) args = parser.parse_args() model_name_or_path = args.input_name_or_path local_path = Path(model_name_or_path) if local_path.exists(): try: model_class = eval(args.nemo_class) except Exception as e: raise ValueError(f"Could not import the specified NeMo class '{args.nemo_class}': {e}") else: model_class = HF_MODEL_ID_TO_NEMO_CLASS[model_name_or_path] import_ckpt(model_class(), f"hf://{model_name_or_path}", output_path=args.output_path)