# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ python qwen25vl_generate.py --load_from_hf --osl 50 """ import argparse import torch from megatron.core.inference.common_inference_params import CommonInferenceParams from qwen_vl_utils import process_vision_info from transformers import AutoProcessor import nemo.lightning as nl from nemo.collections.vlm import Qwen2VLModel, Qwen25VLConfig3B, Qwen25VLConfig7B, Qwen25VLConfig32B, Qwen25VLConfig72B from nemo.collections.vlm.inference import generate as vlm_generate from nemo.collections.vlm.inference import setup_inference_wrapper from nemo.utils import logging def main(args) -> None: # pylint: disable=C0115,C0116,C0301 strategy = nl.MegatronStrategy( tensor_model_parallel_size=args.tp_size, pipeline_model_parallel_size=args.pp_size, ckpt_include_optimizer=False, ) trainer = nl.Trainer( devices=args.tp_size * args.pp_size, max_steps=1000, accelerator="gpu", strategy=strategy, plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"), val_check_interval=1000, limit_val_batches=50, ) # Tokenize the input texts min_pixels = 16 * 28 * 28 max_pixels = 64 * 28 * 28 processor = AutoProcessor.from_pretrained( f"Qwen/Qwen2.5-VL-{args.model_size}-Instruct", min_pixels=min_pixels, max_pixels=max_pixels ) hf_tokenizer = processor.tokenizer fabric = trainer.to_fabric() # Decide whether to import or load the model based on the input arguments if args.load_from_hf: model = fabric.import_model(f"hf://Qwen/Qwen2.5-VL-{args.model_size}-Instruct", Qwen2VLModel) else: model_config = { "3B": Qwen25VLConfig3B, "7B": Qwen25VLConfig7B, "32B": Qwen25VLConfig32B, "72B": Qwen25VLConfig72B, }[args.model_size]() model = Qwen2VLModel(model_config, model_version="qwen25-vl", tokenizer=hf_tokenizer) model = fabric.load_model(args.local_model_path, model) model = model.module.cuda() model.eval() inference_wrapped_model = setup_inference_wrapper(model, hf_tokenizer) messages = [ { "role": "user", "content": [ { "type": "image", "image": args.image_url, }, {"type": "text", "text": "Describe this image."}, ], } ] # Preparation for inference text = processor.apply_chat_template(messages, tokenizer=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inference_params = CommonInferenceParams( temperature=args.temperature, top_p=args.top_p, top_k=args.top_k, num_tokens_to_generate=args.osl, ) prompts = [text] images = [image_inputs] result = vlm_generate( inference_wrapped_model, hf_tokenizer, processor.image_processor, prompts, images, processor=processor, inference_params=inference_params, ) logging.info("======== GENERATED TEXT OUTPUT ========") logging.info(f"{args.image_url}, \t\t{result[0].generated_text}") logging.info("=======================================") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Qwen2.5VL Multimodal Inference") parser.add_argument( "--load_from_hf", action="store_true", help="Flag to indicate whether to load the model from Hugging Face hub." ) parser.add_argument( "--local_model_path", type=str, default=None, help="Path to the local model if not loading from Hugging Face.", ) parser.add_argument( "--image_url", type=str, default="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg", help="URL of the image to use for inference.", ) parser.add_argument("--model_size", type=str, default="3B", choices=["3B", "7B", "32B", "72B"]) parser.add_argument('--osl', type=int, default=30, help='output seq length') parser.add_argument('--tp_size', type=int, default=1, help='tensor parallel size') parser.add_argument('--pp_size', type=int, default=1, help='pipeline parallel size') parser.add_argument( "--temperature", type=float, default=1.0, help="""Temperature to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""", ) parser.add_argument( "--top_p", type=float, default=0.0, help="""top_p to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""", ) parser.add_argument( "--top_k", type=int, default=1, help="""top_k to be used in megatron.core.inference.common_inference_params.CommonInferenceParams""", ) args = parser.parse_args() main(args)