# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import itertools import json import einops import lhotse import lightning.pytorch as pl import numpy as np import pytest import soundfile as sf import torch from omegaconf import DictConfig from nemo.collections.audio.models import EncMaskDecAudioToAudioModel @pytest.fixture(params=["nemo_manifest", "lhotse_cuts"]) def mock_dataset_config(tmp_path, request): num_files = 8 num_samples = 16000 for i in range(num_files): data = np.random.randn(num_samples, 1) sf.write(tmp_path / f"audio_{i}.wav", data, 16000) if request.param == "lhotse_cuts": with lhotse.CutSet.open_writer(tmp_path / "cuts.jsonl") as writer: for i in range(num_files): recording = lhotse.Recording.from_file(tmp_path / f"audio_{i}.wav") cut = lhotse.MonoCut( id=f"audio_{i}", start=0, channel=0, duration=num_samples / 16000, recording=recording, custom={"target_recording": recording}, ) writer.write(cut) return { 'cuts_path': str(tmp_path / "cuts.jsonl"), 'use_lhotse': True, 'batch_size': 2, 'num_workers': 1, } elif request.param == "nemo_manifest": with (tmp_path / "small_manifest.jsonl").open("w") as f: for i in range(num_files): entry = { "noisy_filepath": str(tmp_path / f"audio_{i}.wav"), "clean_filepath": str(tmp_path / f"audio_{i}.wav"), "duration": num_samples / 16000, "offset": 0, } f.write(f"{json.dumps(entry)}\n") return { 'manifest_filepath': str(tmp_path / "small_manifest.jsonl"), 'input_key': 'noisy_filepath', 'target_key': 'clean_filepath', 'use_lhotse': False, 'batch_size': 2, 'num_workers': 1, } else: raise NotImplementedError(f"Dataset type {request.param} not implemented") @pytest.fixture() def mask_model_rnn_params(): model = { 'sample_rate': 16000, 'num_outputs': 1, 'normalize_input': True, } encoder = { '_target_': 'nemo.collections.audio.modules.transforms.AudioToSpectrogram', 'fft_length': 512, 'hop_length': 256, } decoder = { '_target_': 'nemo.collections.audio.modules.transforms.SpectrogramToAudio', 'fft_length': encoder['fft_length'], 'hop_length': encoder['hop_length'], } mask_estimator = { '_target_': 'nemo.collections.audio.modules.masking.MaskEstimatorRNN', 'num_outputs': model['num_outputs'], 'num_subbands': encoder['fft_length'] // 2 + 1, 'num_features': 256, 'num_layers': 3, 'bidirectional': True, } mask_processor = { '_target_': 'nemo.collections.audio.modules.masking.MaskReferenceChannel', 'ref_channel': 0, } loss = { '_target_': 'nemo.collections.audio.losses.SDRLoss', 'scale_invariant': True, } model_config = DictConfig( { 'sample_rate': model['sample_rate'], 'num_outputs': model['num_outputs'], 'encoder': DictConfig(encoder), 'decoder': DictConfig(decoder), 'mask_estimator': DictConfig(mask_estimator), 'mask_processor': DictConfig(mask_processor), 'loss': DictConfig(loss), 'optim': { 'name': 'adam', 'lr': 0.001, 'betas': (0.9, 0.98), }, } ) return model_config @pytest.fixture() def mask_model_rnn(mask_model_rnn_params): with torch.random.fork_rng(): torch.random.manual_seed(0) model = EncMaskDecAudioToAudioModel(cfg=mask_model_rnn_params) return model @pytest.fixture() def mask_model_rnn_with_trainer_and_mock_dataset(mask_model_rnn_params, mock_dataset_config): # Add train and validation dataset configs mask_model_rnn_params["train_ds"] = {**mock_dataset_config, "shuffle": True} mask_model_rnn_params["validation_ds"] = {**mock_dataset_config, "shuffle": False} # Trainer config trainer_cfg = { "max_epochs": -1, "max_steps": 8, "logger": False, "use_distributed_sampler": False, "val_check_interval": 2, "limit_train_batches": 4, "accelerator": "cpu", "enable_checkpointing": False, } mask_model_rnn_params["trainer"] = trainer_cfg trainer = pl.Trainer(**trainer_cfg) with torch.random.fork_rng(): torch.random.manual_seed(0) model = EncMaskDecAudioToAudioModel(cfg=mask_model_rnn_params, trainer=trainer) return model, trainer @pytest.fixture() def mask_model_flexarray(): model = { 'sample_rate': 16000, 'num_outputs': 1, 'normalize_input': True, } encoder = { '_target_': 'nemo.collections.audio.modules.transforms.AudioToSpectrogram', 'fft_length': 512, 'hop_length': 256, } decoder = { '_target_': 'nemo.collections.audio.modules.transforms.SpectrogramToAudio', 'fft_length': encoder['fft_length'], 'hop_length': encoder['hop_length'], } mask_estimator = { '_target_': 'nemo.collections.audio.modules.masking.MaskEstimatorFlexChannels', 'num_outputs': model['num_outputs'], 'num_subbands': encoder['fft_length'] // 2 + 1, 'num_blocks': 3, 'channel_reduction_position': 3, 'channel_reduction_type': 'average', 'channel_block_type': 'transform_average_concatenate', 'temporal_block_type': 'conformer_encoder', 'temporal_block_num_layers': 5, 'temporal_block_num_heads': 4, 'temporal_block_dimension': 128, 'mag_reduction': None, 'mag_normalization': 'mean_var', 'use_ipd': True, 'ipd_normalization': 'mean', } mask_processor = { '_target_': 'nemo.collections.audio.modules.masking.MaskReferenceChannel', 'ref_channel': 0, } loss = { '_target_': 'nemo.collections.audio.losses.SDRLoss', 'scale_invariant': True, } model_config = DictConfig( { 'sample_rate': model['sample_rate'], 'num_outputs': model['num_outputs'], 'encoder': DictConfig(encoder), 'decoder': DictConfig(decoder), 'mask_estimator': DictConfig(mask_estimator), 'mask_processor': DictConfig(mask_processor), 'loss': DictConfig(loss), 'optim': { 'optimizer': 'Adam', 'lr': 0.001, 'betas': (0.9, 0.98), }, } ) model = EncMaskDecAudioToAudioModel(cfg=model_config) return model @pytest.fixture() def bf_model_flexarray(mask_model_flexarray): model_config = mask_model_flexarray.to_config_dict() # Switch processor to beamformer model_config['mask_processor'] = { '_target_': 'nemo.collections.audio.modules.masking.MaskBasedBeamformer', 'filter_type': 'pmwf', 'filter_beta': 0.0, 'filter_rank': 'one', 'filter_postfilter': 'ban', 'ref_channel': 'max_snr', 'ref_hard': 1, 'ref_hard_use_grad': False, 'ref_subband_weighting': False, 'num_subbands': model_config['mask_estimator']['num_subbands'], } model = EncMaskDecAudioToAudioModel(cfg=model_config) return model class TestMaskModelRNN: """Test masking model with RNN mask estimator.""" @pytest.mark.unit def test_constructor(self, mask_model_rnn): """Test that the model can be constructed from a config dict.""" model = mask_model_rnn.train() confdict = model.to_config_dict() instance2 = EncMaskDecAudioToAudioModel.from_config_dict(confdict) assert isinstance(instance2, EncMaskDecAudioToAudioModel) @pytest.mark.unit @pytest.mark.parametrize( "batch_size, sample_len", [ (4, 4), # Example 1 (2, 8), # Example 2 (1, 10), # Example 3 ], ) def test_forward_infer(self, mask_model_rnn, batch_size, sample_len): """Test that the model can run forward inference.""" model = mask_model_rnn.eval() confdict = model.to_config_dict() sampling_rate = confdict['sample_rate'] rng = torch.Generator() rng.manual_seed(0) input_signal = torch.randn(size=(batch_size, 1, sample_len * sampling_rate), generator=rng) input_signal_length = (sample_len * sampling_rate) * torch.ones(batch_size, dtype=torch.int) abs_tol = 1e-5 with torch.no_grad(): # batch size 1 output_list = [] output_length_list = [] for i in range(input_signal.size(0)): output, output_length = model.forward( input_signal=input_signal[i : i + 1], input_length=input_signal_length[i : i + 1] ) output_list.append(output) output_length_list.append(output_length) output_instance = torch.cat(output_list, 0) output_length_instance = torch.cat(output_length_list, 0) # batch size batch_size output_batch, output_length_batch = model.forward( input_signal=input_signal, input_length=input_signal_length ) # Check that the output and output length are the same for the instance and batch assert output_instance.shape == output_batch.shape assert output_length_instance.shape == output_length_batch.shape diff = torch.max(torch.abs(output_instance - output_batch)) assert diff <= abs_tol def test_training_step(self, mask_model_rnn_with_trainer_and_mock_dataset): model, _ = mask_model_rnn_with_trainer_and_mock_dataset model = model.train() for batch in itertools.islice(model._train_dl, 2): # start boilerplate from EncMaskDecAudioToAudioModel.training_step if isinstance(batch, dict): # lhotse batches are dictionaries input_signal = batch["input_signal"] input_length = batch["input_length"] target_signal = batch.get("target_signal", input_signal) else: input_signal, input_length, target_signal, _ = batch if input_signal.ndim == 2: input_signal = einops.rearrange(input_signal, "B T -> B 1 T") if target_signal.ndim == 2: target_signal = einops.rearrange(target_signal, "B T -> B 1 T") # end boilerplate output_signal, _ = model.forward(input_signal=input_signal, input_length=input_length) loss = model.loss(estimate=output_signal, target=target_signal, input_length=input_length) loss.backward() def test_model_training(self, mask_model_rnn_with_trainer_and_mock_dataset): """ Test that the model can be trained for a few steps. An evaluation step is also expected. """ model, trainer = mask_model_rnn_with_trainer_and_mock_dataset model = model.train() trainer.fit(model) class TestMaskModelFlexArray: """Test masking model with channel-flexible mask estimator.""" @pytest.mark.unit def test_constructor(self, mask_model_flexarray): """Test that the model can be constructed from a config dict.""" model = mask_model_flexarray.train() confdict = model.to_config_dict() instance2 = EncMaskDecAudioToAudioModel.from_config_dict(confdict) assert isinstance(instance2, EncMaskDecAudioToAudioModel) @pytest.mark.unit @pytest.mark.parametrize( "batch_size, num_channels, sample_len", [ (4, 1, 4), # 1-channel, Example 1 (2, 1, 8), # 1-channel, Example 2 (1, 1, 10), # 1-channel, Example 3 (4, 3, 4), # 3-channel, Example 1 (2, 3, 8), # 3-channel, Example 2 (1, 3, 10), # 3-channel, Example 3 ], ) def test_forward_infer(self, mask_model_flexarray, batch_size, num_channels, sample_len): """Test that the model can run forward inference.""" model = mask_model_flexarray.eval() confdict = model.to_config_dict() sampling_rate = confdict['sample_rate'] rng = torch.Generator() rng.manual_seed(0) input_signal = torch.randn(size=(batch_size, num_channels, sample_len * sampling_rate), generator=rng) input_signal_length = (sample_len * sampling_rate) * torch.ones(batch_size, dtype=torch.int) abs_tol = 1e-5 with torch.no_grad(): # batch size 1 output_list = [] output_length_list = [] for i in range(input_signal.size(0)): output, output_length = model.forward( input_signal=input_signal[i : i + 1], input_length=input_signal_length[i : i + 1] ) output_list.append(output) output_length_list.append(output_length) output_instance = torch.cat(output_list, 0) output_length_instance = torch.cat(output_length_list, 0) # batch size batch_size output_batch, output_length_batch = model.forward( input_signal=input_signal, input_length=input_signal_length ) # Check that the output and output length are the same for the instance and batch assert output_instance.shape == output_batch.shape assert output_length_instance.shape == output_length_batch.shape diff = torch.max(torch.abs(output_instance - output_batch)) assert diff <= abs_tol class TestBFModelFlexArray: """Test beamforming model with channel-flexible mask estimator.""" @pytest.mark.unit def test_constructor(self, bf_model_flexarray): """Test that the model can be constructed from a config dict.""" model = bf_model_flexarray.train() confdict = model.to_config_dict() instance2 = EncMaskDecAudioToAudioModel.from_config_dict(confdict) assert isinstance(instance2, EncMaskDecAudioToAudioModel) @pytest.mark.unit @pytest.mark.parametrize( "batch_size, num_channels, sample_len", [ (4, 1, 4), # 1-channel, Example 1 (2, 1, 8), # 1-channel, Example 2 (1, 1, 10), # 1-channel, Example 3 (4, 3, 4), # 3-channel, Example 1 (2, 3, 8), # 3-channel, Example 2 (1, 3, 10), # 3-channel, Example 3 ], ) def test_forward_infer(self, bf_model_flexarray, batch_size, num_channels, sample_len): """Test that the model can run forward inference.""" model = bf_model_flexarray.eval() confdict = model.to_config_dict() sampling_rate = confdict['sample_rate'] rng = torch.Generator() rng.manual_seed(0) input_signal = torch.randn(size=(batch_size, num_channels, sample_len * sampling_rate), generator=rng) input_signal_length = (sample_len * sampling_rate) * torch.ones(batch_size, dtype=torch.int) abs_tol = 1e-5 with torch.no_grad(): # batch size 1 output_list = [] output_length_list = [] for i in range(input_signal.size(0)): output, output_length = model.forward( input_signal=input_signal[i : i + 1], input_length=input_signal_length[i : i + 1] ) output_list.append(output) output_length_list.append(output_length) output_instance = torch.cat(output_list, 0) output_length_instance = torch.cat(output_length_list, 0) # batch size batch_size output_batch, output_length_batch = model.forward( input_signal=input_signal, input_length=input_signal_length ) # Check that the output and output length are the same for the instance and batch assert output_instance.shape == output_batch.shape assert output_length_instance.shape == output_length_batch.shape diff = torch.max(torch.abs(output_instance - output_batch)) assert diff <= abs_tol