# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass import pytest import torch from nemo.collections.common.data.utils import move_data_to_device @dataclass class _Batch: data: torch.Tensor @pytest.mark.skipif(not torch.cuda.is_available(), reason="This test requires GPUs.") @pytest.mark.parametrize( "batch", [ torch.tensor([0]), (torch.tensor([0]),), [torch.tensor([0])], {"data": torch.tensor([0])}, _Batch(torch.tensor([0])), "not a tensor", ], ) def test_move_data_to_device(batch): cuda_batch = move_data_to_device(batch, device="cuda") assert type(batch) == type(cuda_batch) if isinstance(batch, _Batch): assert cuda_batch.data.is_cuda elif isinstance(batch, dict): assert cuda_batch["data"].is_cuda elif isinstance(batch, (list, tuple)): assert cuda_batch[0].is_cuda elif isinstance(batch, torch.Tensor): assert cuda_batch.is_cuda else: assert cuda_batch == batch