# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from nemo.collections.common.metrics.classification_accuracy import TopKClassificationAccuracy from nemo.collections.common.metrics.punct_er import ( DatasetPunctuationErrorRate, OccurancePunctuationErrorRate, punctuation_error_rate, ) from .loss_inputs import ALL_NUM_MEASUREMENTS_ARE_ZERO, NO_ZERO_NUM_MEASUREMENTS, SOME_NUM_MEASUREMENTS_ARE_ZERO from .perplexity_inputs import NO_PROBS_NO_LOGITS, ONLY_LOGITS1, ONLY_LOGITS100, ONLY_PROBS, PROBS_AND_LOGITS from .pl_utils import LossTester, PerplexityTester class TestCommonMetrics: top_k_logits = torch.tensor( [[0.1, 0.3, 0.2, 0.0], [0.9, 0.6, 0.2, 0.3], [0.2, 0.1, 0.4, 0.3]], ) # 1 # 0 # 2 @pytest.mark.unit def test_top_1_accuracy(self): labels = torch.tensor([0, 0, 2], dtype=torch.long) accuracy = TopKClassificationAccuracy(top_k=None) acc = accuracy(logits=self.top_k_logits, labels=labels) assert accuracy.correct_counts_k.shape == torch.Size([1]) assert accuracy.total_counts_k.shape == torch.Size([1]) assert abs(acc[0] - 0.667) < 1e-3 @pytest.mark.unit def test_top_1_2_accuracy(self): labels = torch.tensor([0, 1, 0], dtype=torch.long) accuracy = TopKClassificationAccuracy(top_k=[1, 2]) top1_acc, top2_acc = accuracy(logits=self.top_k_logits, labels=labels) assert accuracy.correct_counts_k.shape == torch.Size([2]) assert accuracy.total_counts_k.shape == torch.Size([2]) assert abs(top1_acc - 0.0) < 1e-3 assert abs(top2_acc - 0.333) < 1e-3 @pytest.mark.unit def test_top_1_accuracy_distributed(self): # Simulate test on 2 process DDP execution labels = torch.tensor([[0, 0, 2], [2, 0, 0]], dtype=torch.long) accuracy = TopKClassificationAccuracy(top_k=None) proc1_acc = accuracy(logits=self.top_k_logits, labels=labels[0]) correct1, total1 = accuracy.correct_counts_k, accuracy.total_counts_k accuracy.reset() proc2_acc = accuracy(logits=torch.flip(self.top_k_logits, dims=[1]), labels=labels[1]) # reverse logits correct2, total2 = accuracy.correct_counts_k, accuracy.total_counts_k correct = torch.stack([correct1, correct2]) total = torch.stack([total1, total2]) assert correct.shape == torch.Size([2, 1]) assert total.shape == torch.Size([2, 1]) assert abs(proc1_acc[0] - 0.667) < 1e-3 # 2/3 assert abs(proc2_acc[0] - 0.333) < 1e-3 # 1/3 accuracy.reset() accuracy.correct_counts_k = torch.tensor([correct.sum()]) accuracy.total_counts_k = torch.tensor([total.sum()]) acc_topk = accuracy.compute() acc_top1 = acc_topk[0] assert abs(acc_top1 - 0.5) < 1e-3 # 3/6 @pytest.mark.unit def test_top_1_accuracy_distributed_uneven_batch(self): # Simulate test on 2 process DDP execution accuracy = TopKClassificationAccuracy(top_k=None) proc1_acc = accuracy(logits=self.top_k_logits, labels=torch.tensor([0, 0, 2])) correct1, total1 = accuracy.correct_counts_k, accuracy.total_counts_k proc2_acc = accuracy( logits=torch.flip(self.top_k_logits, dims=[1])[:2, :], # reverse logits, select first 2 samples labels=torch.tensor([2, 0]), ) # reduce number of labels correct2, total2 = accuracy.correct_counts_k, accuracy.total_counts_k correct = torch.stack([correct1, correct2]) total = torch.stack([total1, total2]) assert correct.shape == torch.Size([2, 1]) assert total.shape == torch.Size([2, 1]) assert abs(proc1_acc[0] - 0.667) < 1e-3 # 2/3 assert abs(proc2_acc[0] - 0.500) < 1e-3 # 1/2 accuracy.correct_counts_k = torch.tensor([correct.sum()]) accuracy.total_counts_k = torch.tensor([total.sum()]) acc_topk = accuracy.compute() acc_top1 = acc_topk[0] assert abs(acc_top1 - 0.6) < 1e-3 # 3/5 @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("dist_sync_on_step", [True, False]) @pytest.mark.parametrize( "probs, logits", [ (ONLY_PROBS.probs, ONLY_PROBS.logits), (ONLY_LOGITS1.probs, ONLY_LOGITS1.logits), (ONLY_LOGITS100.probs, ONLY_LOGITS100.logits), (PROBS_AND_LOGITS.probs, PROBS_AND_LOGITS.logits), (NO_PROBS_NO_LOGITS.probs, NO_PROBS_NO_LOGITS.logits), ], ) class TestPerplexity(PerplexityTester): @pytest.mark.pleasefixme def test_perplexity(self, ddp, dist_sync_on_step, probs, logits): self.run_class_perplexity_test( ddp=ddp, probs=probs, logits=logits, dist_sync_on_step=dist_sync_on_step, ) @pytest.mark.parametrize("ddp", [True, False]) @pytest.mark.parametrize("dist_sync_on_step", [True, False]) @pytest.mark.parametrize("take_avg_loss", [True, False]) @pytest.mark.parametrize( "loss_sum_or_avg, num_measurements", [ (NO_ZERO_NUM_MEASUREMENTS.loss_sum_or_avg, NO_ZERO_NUM_MEASUREMENTS.num_measurements), (SOME_NUM_MEASUREMENTS_ARE_ZERO.loss_sum_or_avg, SOME_NUM_MEASUREMENTS_ARE_ZERO.num_measurements), (ALL_NUM_MEASUREMENTS_ARE_ZERO.loss_sum_or_avg, ALL_NUM_MEASUREMENTS_ARE_ZERO.num_measurements), ], ) class TestLoss(LossTester): def test_loss(self, ddp, dist_sync_on_step, loss_sum_or_avg, num_measurements, take_avg_loss): self.run_class_loss_test( ddp=ddp, loss_sum_or_avg=loss_sum_or_avg, num_measurements=num_measurements, dist_sync_on_step=dist_sync_on_step, take_avg_loss=take_avg_loss, ) class TestPunctuationErrorRate: reference = "Hi, dear! Nice to see you. What's" hypothesis = "Hi dear! Nice to see you! What's?" punctuation_marks = [".", ",", "!", "?"] operation_amounts = { '.': {'Correct': 0, 'Deletions': 0, 'Insertions': 0, 'Substitutions': 1}, ',': {'Correct': 0, 'Deletions': 1, 'Insertions': 0, 'Substitutions': 0}, '!': {'Correct': 1, 'Deletions': 0, 'Insertions': 0, 'Substitutions': 0}, '?': {'Correct': 0, 'Deletions': 0, 'Insertions': 1, 'Substitutions': 0}, } substitution_amounts = { '.': {'.': 0, ',': 0, '!': 1, '?': 0}, ',': {'.': 0, ',': 0, '!': 0, '?': 0}, '!': {'.': 0, ',': 0, '!': 0, '?': 0}, '?': {'.': 0, ',': 0, '!': 0, '?': 0}, } correct_rate = 0.25 deletions_rate = 0.25 insertions_rate = 0.25 substitutions_rate = 0.25 punct_er = 0.75 operation_rates = { '.': {'Correct': 0.0, 'Deletions': 0.0, 'Insertions': 0.0, 'Substitutions': 1.0}, ',': {'Correct': 0.0, 'Deletions': 1.0, 'Insertions': 0.0, 'Substitutions': 0.0}, '!': {'Correct': 1.0, 'Deletions': 0.0, 'Insertions': 0.0, 'Substitutions': 0.0}, '?': {'Correct': 0.0, 'Deletions': 0.0, 'Insertions': 1.0, 'Substitutions': 0.0}, } substitution_rates = { '.': {'.': 0.0, ',': 0.0, '!': 1.0, '?': 0.0}, ',': {'.': 0.0, ',': 0.0, '!': 0.0, '?': 0.0}, '!': {'.': 0.0, ',': 0.0, '!': 0.0, '?': 0.0}, '?': {'.': 0.0, ',': 0.0, '!': 0.0, '?': 0.0}, } @pytest.mark.unit def test_punctuation_error_rate(self): assert punctuation_error_rate([self.reference], [self.hypothesis], self.punctuation_marks) == self.punct_er @pytest.mark.unit def test_OccurancePunctuationErrorRate(self): oper_obj = OccurancePunctuationErrorRate(self.punctuation_marks) operation_amounts, substitution_amounts, punctuation_rates = oper_obj.compute(self.reference, self.hypothesis) assert operation_amounts == self.operation_amounts assert substitution_amounts == self.substitution_amounts assert punctuation_rates.correct_rate == self.correct_rate assert punctuation_rates.deletions_rate == self.deletions_rate assert punctuation_rates.insertions_rate == self.insertions_rate assert punctuation_rates.substitutions_rate == self.substitutions_rate assert punctuation_rates.punct_er == self.punct_er assert punctuation_rates.operation_rates == self.operation_rates assert punctuation_rates.substitution_rates == self.substitution_rates @pytest.mark.unit def test_DatasetPunctuationErrorRate(self): dper_obj = DatasetPunctuationErrorRate([self.reference], [self.hypothesis], self.punctuation_marks) dper_obj.compute() assert dper_obj.correct_rate == self.correct_rate assert dper_obj.deletions_rate == self.deletions_rate assert dper_obj.insertions_rate == self.insertions_rate assert dper_obj.substitutions_rate == self.substitutions_rate assert dper_obj.punct_er == self.punct_er assert dper_obj.operation_rates == self.operation_rates assert dper_obj.substitution_rates == self.substitution_rates