# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import List, Optional import pytest def set_env(): os.environ['NVTE_APPLY_QK_LAYER_SCALING'] = '0' import sys from pathlib import Path import pytest import torch from megatron.core.optimizer import OptimizerConfig from megatron.core.transformer.enums import AttnBackend import nemo.lightning as nl from nemo.collections import llm from nemo.collections.llm.gpt.data import PreTrainingDataModule from nemo.collections.nlp.modules.common.tokenizer_utils import get_nmt_tokenizer from nemo.lightning.pytorch.callbacks import ModelCheckpoint from nemo.lightning.pytorch.optim import CosineAnnealingScheduler from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule from nemo.utils.exp_manager import TimingCallback DATA_PATH = "/home/TestData/nlp/megatron_gpt/data/gpt/simple_wiki_gpt_preproc_text_document" VOCAB_PATH = "/home/TestData/nlp/megatron_gpt/data/gpt/vocab.json" MERGES_PATH = "/home/TestData/nlp/megatron_gpt/data/gpt/merges.txt" def load_dcp(ckpt_dir, torch_tensor=True): from pathlib import Path import torch import torch.distributed.checkpoint as dcp from torch.distributed.checkpoint import FileSystemReader if not isinstance(ckpt_dir, Path): ckpt_dir = Path(ckpt_dir) fs_reader = FileSystemReader(ckpt_dir) metadata = fs_reader.read_metadata() state_dict = { k: torch.empty(tp.size, dtype=tp.properties.dtype) for k, tp in metadata.state_dict_metadata.items() if type(tp).__name__ == 'TensorStorageMetadata' } dcp.load( state_dict, storage_reader=fs_reader, # no_dist=True, ) return state_dict def compare_ckpts(a, b, path: Optional[List[str]] = None): path = path if path is not None else [] if isinstance(a, dict): assert isinstance(b, dict) assert set(a.keys()) == set(b.keys()) for key in a.keys(): compare_ckpts(a[key], b[key], path + [key]) elif isinstance(a, list): assert isinstance(b, list) assert len(a) == len(b) for i, (aa, bb) in enumerate(zip(a, b)): compare_ckpts(aa, bb, path + [f'[{i}]']) elif isinstance(a, torch.Tensor): skey = '.'.join(path) assert a.dtype == b.dtype, f"mismatch\t{skey}: different dtypes {a.dtype} {b.dtype}" assert a.shape == b.shape, f"mismatch\t{skey}: different shape {a.shape} {b.shape}" assert torch.all(a == b), f"mismatch\t{skey}: different values\n{a}\n{b}" print(f'match\t{skey}', file=sys.stderr) else: raise ValueError("Unexpected value type " + str(type(a))) def setup_data(log_dir, n_steps, data_path, gbs=2, mbs=1): seq_length = 2048 tokenizer = get_nmt_tokenizer( "megatron", "GPT2BPETokenizer", vocab_file=VOCAB_PATH, merges_file=MERGES_PATH, ) data = PreTrainingDataModule( paths=data_path, seq_length=2048, micro_batch_size=mbs, global_batch_size=gbs, seed=1234, tokenizer=tokenizer, split='9999,1,1', ) return data def setup_model_optim(log_dir, n_steps, tokenizer, gbs=2, mbs=1): seq_length = 2048 gpt_config = llm.GPTConfig( num_layers=2, hidden_size=128, ffn_hidden_size=256, num_attention_heads=1, seq_length=seq_length, init_method_std=0.023, hidden_dropout=0.0, attention_dropout=0.0, layernorm_epsilon=1e-5, make_vocab_size_divisible_by=128, normalization='RMSNorm', masked_softmax_fusion=False, attention_backend=AttnBackend.unfused, ) model = llm.GPTModel(gpt_config, tokenizer=tokenizer) opt_config = OptimizerConfig( optimizer='adam', lr=1e-2, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.95, adam_eps=1e-8, clip_grad=1.0, log_num_zeros_in_grad=False, timers=None, bf16=True, use_distributed_optimizer=False, ) optim = MegatronOptimizerModule(config=opt_config) return gpt_config, model, optim def setup_trainer_and_logger(log_dir): strategy = nl.MegatronStrategy( tensor_model_parallel_size=1, ckpt_include_optimizer=True, ckpt_parallel_load=True, ckpt_parallel_save_optim=False, ckpt_async_save=False, save_ckpt_format='torch_dist', progress_interval=1, ) checkpoint_callback = ModelCheckpoint( save_last=True, monitor="reduced_train_loss", save_top_k=10, every_n_train_steps=10, always_save_context=True, save_context_on_train_end=True, save_on_train_epoch_end=True, save_optim_on_train_end=True, filename=f'{{step}}-{{epoch}}', ) callbacks = [checkpoint_callback, TimingCallback()] trainer = nl.Trainer( devices=1, max_steps=40, accelerator="gpu", strategy=strategy, callbacks=callbacks, log_every_n_steps=1, val_check_interval=20, limit_val_batches=0.0, num_sanity_val_steps=0, enable_checkpointing=True, plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"), ) nemo_logger = nl.NeMoLogger( log_dir=log_dir, version='v1', use_datetime_version=True, update_logger_directory=True, wandb=None, ckpt=checkpoint_callback, ) return trainer, nemo_logger def replace_first(x, old, new): assert x.startswith(old) return x.replace(old, new, 1) def extract_model_keys(ckpt_keys): # should be a list or a set assert not isinstance(ckpt_keys, dict) return list(filter(lambda x: x.startswith('module.'), ckpt_keys)) def prepend_exp_avg(model_keys): return list(map(lambda x: replace_first(x, 'module.', 'optimizer.state.exp_avg.module.'), model_keys)) def prepend_exp_avg_sq(model_keys): return list(map(lambda x: replace_first(x, 'module.', 'optimizer.state.exp_avg_sq.module.'), model_keys)) def prepend_exp_avg_sq(model_keys): return list(map(lambda x: replace_first(x, 'module.', 'optimizer.state.fp32_param.module.'), model_keys)) def has_all_keys(ckpt_keys, keys): return all(map(lambda x: x in ckpt_keys, keys)) def teardown(): import shutil for steps in [40, 10]: # if a directory does not exist, should not stop from removing another. try: shutil.rmtree(f'/tmp/mcore_logs_{steps}steps/') except: continue class TestCkptStateRestoration: @pytest.mark.run_only_on('GPU') def test_resume_optim_state(self, tmp_path): def train(n_steps, resume): log_dir = f'/tmp/mcore_logs_{n_steps}steps' os.makedirs(log_dir, exist_ok=True) data_path = [DATA_PATH] data = setup_data(log_dir, n_steps, data_path, gbs=2, mbs=1) # Other tests might have different configs, so need to configure explicitly. from tests.lightning.mcore_microbatch_utils import reconfigure_num_microbatches_calculator_manager with reconfigure_num_microbatches_calculator_manager( 0, None, 2, # gbs 1, # mbs data_parallel_size=1, ): gpt_config, model, optim = setup_model_optim(log_dir, n_steps, data.tokenizer) trainer, nemo_logger = setup_trainer_and_logger(log_dir) llm.train( model=model, data=data, trainer=trainer, log=nemo_logger, resume=resume, tokenizer='data', optim=optim, ) trainer._teardown() set_env() assert os.environ['NVTE_APPLY_QK_LAYER_SCALING'] == '0' # Train for 40 steps train( 40, nl.AutoResume( resume_if_exists=True, resume_ignore_no_checkpoint=True, ), ) # Train for 10 steps, resume from the 30th step of previous run. resume_path = '/tmp/mcore_logs_40steps/default/v1/checkpoints/step=29-epoch=0' assert Path(resume_path).exists() train( 10, nl.AutoResume( resume_if_exists=True, resume_ignore_no_checkpoint=False, resume_from_path=resume_path, ), ) # Finally check everything matches. paths = [ '/tmp/mcore_logs_40steps/default/v1/checkpoints/step=39-epoch=0/weights', '/tmp/mcore_logs_10steps/default/v1/checkpoints/step=39-epoch=0/weights', ] assert all(map(lambda x: Path(x).exists(), paths)) ckpts = list(map(load_dcp, paths)) # Verify ckpt structure model_keys = extract_model_keys(ckpts[0].keys()) assert len(model_keys) > 0 assert set(model_keys) == set(extract_model_keys(ckpts[1].keys())) for ckpt_keys in [ckpts[0].keys(), ckpts[1].keys()]: assert has_all_keys(ckpt_keys, prepend_exp_avg(model_keys)) assert has_all_keys(ckpt_keys, prepend_exp_avg_sq(model_keys)) assert has_all_keys(ckpt_keys, prepend_exp_avg_sq(model_keys)) # Verify ckpt contents compare_ckpts(ckpts[0], ckpts[1]) teardown()