# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import os from pathlib import Path from typing import Optional import torch import torch.distributed from lightning.pytorch import Trainer from torch import nn DEFAULT_NEMO_CACHE_HOME = Path.home() / ".cache" / "nemo" NEMO_CACHE_HOME = Path(os.getenv("NEMO_HOME", DEFAULT_NEMO_CACHE_HOME)) DEFAULT_NEMO_DATASETS_CACHE = NEMO_CACHE_HOME / "datasets" NEMO_DATASETS_CACHE = Path(os.getenv("NEMO_DATASETS_CACHE", DEFAULT_NEMO_DATASETS_CACHE)) DEFAULT_NEMO_MODELS_CACHE = NEMO_CACHE_HOME / "models" NEMO_MODELS_CACHE = Path(os.getenv("NEMO_MODELS_CACHE", DEFAULT_NEMO_MODELS_CACHE)) if os.getenv('TOKENIZERS_PARALLELISM') is None: os.putenv('TOKENIZERS_PARALLELISM', 'True') def get_vocab_size( config, vocab_size: int, make_vocab_size_divisible_by: int = 128, ) -> int: """returns `vocab size + padding` to make sure sum is dividable by `make_vocab_size_divisible_by`""" from nemo.utils import logging after = vocab_size multiple = make_vocab_size_divisible_by * config.tensor_model_parallel_size after = ((after + multiple - 1) // multiple) * multiple logging.info( f"Padded vocab_size: {after}, original vocab_size: {vocab_size}, dummy tokens:" f" {after - vocab_size}." ) return after def teardown(trainer: Trainer, model: Optional[nn.Module] = None) -> None: """Destroys distributed environment and cleans up cache / collects garbage""" # Destroy torch distributed if torch.distributed.is_initialized(): from megatron.core import parallel_state parallel_state.destroy_model_parallel() torch.distributed.destroy_process_group() trainer._teardown() # noqa: SLF001 if model is not None: for obj in gc.get_objects(): try: if torch.is_tensor(obj) and obj.is_cuda: del obj except: pass gc.collect() torch.cuda.empty_cache() __all__ = ["get_vocab_size", "teardown"]