# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Gemma3 language model pretrain""" import torch from lightning.pytorch.loggers import TensorBoardLogger from megatron.core.distributed import DistributedDataParallelConfig from megatron.core.optimizer import OptimizerConfig from nemo import lightning as nl from nemo.collections import llm from nemo.collections.llm.gpt.model.gemma3 import Gemma3Config1B, Gemma3Model from nemo.lightning.pytorch.optim import CosineAnnealingScheduler, MegatronOptimizerModule from nemo.utils.exp_manager import TimingCallback def main(): """Entrypoint""" data = llm.MockDataModule( num_train_samples=1_000_000, seq_length=1024, global_batch_size=32, micro_batch_size=1, ) model_config = Gemma3Config1B() model = Gemma3Model(model_config) strategy = nl.MegatronStrategy( tensor_model_parallel_size=1, pipeline_model_parallel_size=1, pipeline_dtype=torch.bfloat16, virtual_pipeline_model_parallel_size=None, context_parallel_size=1, expert_model_parallel_size=1, sequence_parallel=False, gradient_as_bucket_view=True, ckpt_async_save=True, ckpt_parallel_save=True, ckpt_parallel_load=True, ckpt_parallel_save_optim=True, ckpt_load_strictness="log_all", ddp=DistributedDataParallelConfig( check_for_nan_in_grad=True, grad_reduce_in_fp32=True, overlap_grad_reduce=True, overlap_param_gather=True, average_in_collective=True, ), ) trainer = nl.Trainer( accelerator="gpu", devices=2, num_nodes=1, max_steps=10, limit_val_batches=0, val_check_interval=5, log_every_n_steps=1, strategy=strategy, accumulate_grad_batches=1, use_distributed_sampler=False, plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"), enable_checkpointing=False, callbacks=[ TimingCallback(), ], ) opt_config = OptimizerConfig( optimizer="adam", lr=3e-4, weight_decay=0.1, bf16=True, fp16=False, adam_beta1=0.9, adam_beta2=0.95, adam_eps=1e-5, use_distributed_optimizer=True, clip_grad=1.0, ) lr_scheduler = CosineAnnealingScheduler( warmup_steps=2000, constant_steps=0, min_lr=3e-5, ) opt = MegatronOptimizerModule(config=opt_config, lr_scheduler=lr_scheduler) ckpt = nl.ModelCheckpoint( save_top_k=1, save_last=True, save_optim_on_train_end=False, filename="{val_loss:.2f}-{step}-{consumed_samples}", ) tb = TensorBoardLogger( save_dir="tensorboard", name="", ) logger = nl.NeMoLogger( explicit_log_dir="/tmp/gemma3", log_global_rank_0_only=True, update_logger_directory=True, ckpt=ckpt, tensorboard=tb, ) resume = nl.AutoResume( resume_if_exists=True, resume_ignore_no_checkpoint=True, ) llm.pretrain( model=model, data=data, trainer=trainer, log=logger, resume=resume, optim=opt, ) if __name__ == "__main__": main()