# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import difflib import os from typing import List import nemo_run as run from lightning.pytorch.callbacks.callback import Callback from nemo_run.core.serialization.yaml import YamlSerializer from nemo_run.run.torchx_backend.packaging import _serialize from nemo.collections.common.tokenizers.huggingface import AutoTokenizer from nemo.collections.llm.gpt.data.squad import SquadDataModule from nemo.collections.llm.gpt.model import GPTModel from nemo.collections.llm.recipes.llama3_8b import MegatronCommOverlapCallback from nemo.lightning.base import DEFAULT_NEMO_CACHE_HOME from nemo.utils import logging DEFAULT_NEMO_HOME = os.getenv('NEMO_HOME', DEFAULT_NEMO_CACHE_HOME) def hf_tokenizer(model_name: str) -> run.Config[AutoTokenizer]: """ HuggingFace tokenizer. Args: model_name (str): corresponds to HuggingFace-AutoTokenizer's 'pretrained_model_name_or_path' input argument. For more details please refer to- huggingface.co/docs/transformers/v4.47.1/en/model_doc/auto#transformers.AutoTokenizer """ log_msg = [ f"`AutoTokenizer` first searches for tokenizer files locally stored in {DEFAULT_NEMO_HOME}.", "(from env var `NEMO_HOME`- can be changed using '-nh/--nemo_home' CLI arg).", "If files are missing locally, `AutoTokenizer` will try downloading from HuggingFace. In this case-", "make sure env vars 'HF_HUB_OFFLINE':'0' and 'HF_TOKEN':'' are set in your sbatch script.", "Both of these will be set automatically if you provide '-hf/--hf_token' CLI arg.", ] logging.warning(" ".join(log_msg)) return run.Config( AutoTokenizer, pretrained_model_name=model_name, use_fast=True, ) def import_ckpt_experiment(executor: run.SlurmExecutor, model: run.Config[GPTModel], source: str): """ Downloads/Acceses checkpoint to be used for fine-tuning. `import_ckpt` first tries find the nemo checkpoint in /models/. For eg: for llama3 8b, the path will look like- /models/meta-llama/Meta-Llama-3-8B If missing, tries to downloads at the same location from HuggingFace and converts it nemo format. Args: source (str): HuggingFace URL. For eg- hf://meta-llama/Meta-Llama-3-70B """ from copy import deepcopy from nemo.collections.llm import import_ckpt import_executor = deepcopy(executor) import_executor.ntasks_per_node = 1 import_executor.nodes = 1 return run.Partial(import_ckpt, model=model, source=source, overwrite=False), import_executor, "import_ckpt_exp" def get_nemo_home(nemo_home=None): """ Get NEMO_HOME path. Checks for both nemo_home argument and NEMO_HOME environment variable. """ arg_nemo_set = nemo_home is True env_nemo_set = "NEMO_HOME" in os.environ if arg_nemo_set and env_nemo_set: if os.environ["NEMO_HOME"] != nemo_home: logging.warning(f"Using nemo_home ({nemo_home}) instead of NEMO_HOME ({os.environ['NEMO_HOME']})") return nemo_home if arg_nemo_set: return nemo_home if env_nemo_set: return os.environ["NEMO_HOME"] raise ValueError("Neither -nh/--nemo_home argument nor NEMO_HOME environment variable is set") def prepare_squad_dataset(model_name: str, seq_length: int = 2048, nemo_home=None): """Prepare the SQuAD dataset for fine-tuning. Args: model_name (str): The name of the model seq_length (int): The sequence length to use for packing. Defaults to 2048. nemo_home: Optional path to NEMO home directory set via args.nemo_home """ from pathlib import Path from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer from nemo.collections.llm.gpt.data.packed_sequence import PackedSequenceSpecs from nemo.collections.llm.gpt.data.squad import SquadDataModule nemo_home_path = Path(get_nemo_home(nemo_home)) dataset_root = nemo_home_path / "datasets" / "squad" dataset_root.mkdir(parents=True, exist_ok=True) tokenizer = AutoTokenizer(pretrained_model_name=model_name) # Configure SquadDataModule with packing specs datamodule = SquadDataModule( dataset_root=dataset_root, seq_length=seq_length, global_batch_size=8, micro_batch_size=1, packed_sequence_specs=PackedSequenceSpecs(packed_sequence_size=seq_length), tokenizer=tokenizer, force_redownload=True, delete_raw=False, seed=1234, ) # This will generate both JSONL and packed .bin files datamodule.prepare_data() # Verify the output packed_dir = dataset_root / "packed" / model_name.replace("/", "--") print(f"Packed files should be in: {packed_dir}") if packed_dir.exists(): print("Files found:", list(packed_dir.glob("*"))) else: raise FileNotFoundError(f"Packed dataset dir not found at {packed_dir}. Dataset download failed") def prepare_squad_dataset_experiment( executor: run.SlurmExecutor, model_name: str, seq_length: int = 2048, nemo_home=None ): """ Downloads and prepares the SQuAD dataset for fine-tuning. """ from copy import deepcopy dataset_executor = deepcopy(executor) dataset_executor.ntasks_per_node = 1 dataset_executor.nodes = 1 return ( run.Partial( prepare_squad_dataset, model_name=model_name, seq_length=seq_length, nemo_home=nemo_home, ), dataset_executor, "prepare_squad_dataset_exp", ) def isfile_train_pack_metadata(hf_model_uri: str, data_config: run.Config[SquadDataModule]) -> bool: """ This method is used for fine-tuning. It checks if packed train data for a partiular sequence length exists locally. This is needed to set data flag (force_redownload=True) which avoids experiment crash in case files are missing. """ datasets_dir = os.getenv("NEMO_DATASETS_CACHE", os.path.join(DEFAULT_NEMO_HOME, "datasets")) model_dir = hf_model_uri.replace("/", "--") metadata_filename = f"{data_config.seq_length}_metadata.jsonl" train_pack_metadata_filepath = os.path.join(datasets_dir, "squad", "packed", model_dir, metadata_filename) return os.path.exists(train_pack_metadata_filepath) and os.path.isfile(train_pack_metadata_filepath) def get_comm_overlap_callback_idx(callbacks: List[Callback]) -> int | None: """ nemo.lightning.Trainer has a list of callbacks defined. This method identifies index of MegatronCommOverlapCallback from the list defined in recipes in nemo.collections.llm.recipes. The index is needed to override ddp communication params """ if callbacks: # default is None in lightning for idx, callback in enumerate(callbacks): if callback.__fn_or_cls__ == MegatronCommOverlapCallback: return idx return None def dump_config_diff_from_base_recipe( base_recipe: str, new_recipe: str, output_dir: str, file_name: str = "config_diff.txt" ): """ Dump the config diff from the base recipe. """ base_recipe_config = _serialize(base_recipe, serializer_cls=YamlSerializer) new_recipe_config = _serialize(new_recipe, serializer_cls=YamlSerializer) diff = difflib.unified_diff( base_recipe_config.splitlines(keepends=True), new_recipe_config.splitlines(keepends=True), fromfile="base_recipe", tofile="new_recipe", lineterm="", ) diff = "".join(diff) print("dumping config diff to ", os.path.join(output_dir, file_name)) with open(os.path.join(output_dir, file_name), "w") as f: f.write(diff)