Upload agent.py
Browse files
agent.py
CHANGED
|
@@ -156,13 +156,10 @@ def build_graph(provider: str = "groq"):
|
|
| 156 |
"""Build the graph"""
|
| 157 |
# Load environment variables from .env file
|
| 158 |
if provider == "google":
|
| 159 |
-
# Google Gemini
|
| 160 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
| 161 |
elif provider == "groq":
|
| 162 |
-
# Groq https://console.groq.com/docs/models
|
| 163 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
| 164 |
elif provider == "huggingface":
|
| 165 |
-
# TODO: Add huggingface endpoint
|
| 166 |
llm = ChatHuggingFace(
|
| 167 |
llm=HuggingFaceEndpoint(
|
| 168 |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
|
@@ -181,14 +178,21 @@ def build_graph(provider: str = "groq"):
|
|
| 181 |
|
| 182 |
def retriever(state: MessagesState):
|
| 183 |
"""Retriever node"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
|
|
|
| 185 |
|
| 186 |
if similar_question:
|
| 187 |
example_msg = HumanMessage(
|
| 188 |
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
| 189 |
)
|
|
|
|
| 190 |
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
| 191 |
else:
|
|
|
|
| 192 |
return {"messages": [sys_msg] + state["messages"]}
|
| 193 |
|
| 194 |
|
|
|
|
| 156 |
"""Build the graph"""
|
| 157 |
# Load environment variables from .env file
|
| 158 |
if provider == "google":
|
|
|
|
| 159 |
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
| 160 |
elif provider == "groq":
|
|
|
|
| 161 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
|
| 162 |
elif provider == "huggingface":
|
|
|
|
| 163 |
llm = ChatHuggingFace(
|
| 164 |
llm=HuggingFaceEndpoint(
|
| 165 |
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
|
|
|
| 178 |
|
| 179 |
def retriever(state: MessagesState):
|
| 180 |
"""Retriever node"""
|
| 181 |
+
print("DEBUG: Starting retriever function")
|
| 182 |
+
print(f"DEBUG: Incoming state messages count: {len(state['messages'])}")
|
| 183 |
+
print(f"DEBUG: Content of first message: {state['messages'][0].content}")
|
| 184 |
+
|
| 185 |
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
| 186 |
+
print(f"DEBUG: Found {len(similar_question)} similar questions")
|
| 187 |
|
| 188 |
if similar_question:
|
| 189 |
example_msg = HumanMessage(
|
| 190 |
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
| 191 |
)
|
| 192 |
+
print(f"DEBUG: Example message content preview: {example_msg.content[:100]}...") # print first 100 chars
|
| 193 |
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
| 194 |
else:
|
| 195 |
+
print("DEBUG: No similar question found")
|
| 196 |
return {"messages": [sys_msg] + state["messages"]}
|
| 197 |
|
| 198 |
|