Spaces:
Paused
Paused
backup
Browse files
app.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import base64
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import shutil
|
| 6 |
+
import uuid
|
| 7 |
+
import glob
|
| 8 |
+
from huggingface_hub import CommitScheduler, HfApi, snapshot_download
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import git
|
| 11 |
+
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
|
| 12 |
+
import threading
|
| 13 |
+
import time
|
| 14 |
+
from utils import process_and_push_dataset
|
| 15 |
+
from datasets import load_dataset
|
| 16 |
+
|
| 17 |
+
api = HfApi(token=os.environ["HF_TOKEN"])
|
| 18 |
+
|
| 19 |
+
VALID_DATASET = load_dataset("taesiri/IERv2-Subset", split="train")
|
| 20 |
+
|
| 21 |
+
VALID_DATASET_POST_IDS = (
|
| 22 |
+
load_dataset("taesiri/IERv2-Subset", split="train", columns=["post_id"])
|
| 23 |
+
.to_pandas()["post_id"]
|
| 24 |
+
.tolist()
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
POST_ID_TO_ID_MAP = {post_id: idx for idx, post_id in enumerate(VALID_DATASET_POST_IDS)}
|
| 28 |
+
|
| 29 |
+
DATASET_REPO = "taesiri/AIImageEditingResults_Intemediate"
|
| 30 |
+
FINAL_DATASET_REPO = "taesiri/AIImageEditingResults"
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# Download existing data from hub
|
| 34 |
+
def sync_with_hub():
|
| 35 |
+
"""
|
| 36 |
+
Synchronize local data with the hub by cloning the dataset repo
|
| 37 |
+
"""
|
| 38 |
+
print("Starting sync with hub...")
|
| 39 |
+
data_dir = Path("./data")
|
| 40 |
+
if data_dir.exists():
|
| 41 |
+
# Backup existing data
|
| 42 |
+
backup_dir = Path("./data_backup")
|
| 43 |
+
if backup_dir.exists():
|
| 44 |
+
shutil.rmtree(backup_dir)
|
| 45 |
+
shutil.copytree(data_dir, backup_dir)
|
| 46 |
+
|
| 47 |
+
# Clone/pull latest data from hub
|
| 48 |
+
repo_url = f"https://huggingface.co/datasets/{DATASET_REPO}"
|
| 49 |
+
hub_data_dir = Path("hub_data")
|
| 50 |
+
|
| 51 |
+
if hub_data_dir.exists():
|
| 52 |
+
# If repo exists, do a git pull
|
| 53 |
+
print("Pulling latest changes...")
|
| 54 |
+
repo = git.Repo(hub_data_dir)
|
| 55 |
+
origin = repo.remotes.origin
|
| 56 |
+
origin.pull()
|
| 57 |
+
else:
|
| 58 |
+
# Clone the repo
|
| 59 |
+
print("Cloning repository...")
|
| 60 |
+
git.Repo.clone_from(repo_url, hub_data_dir)
|
| 61 |
+
|
| 62 |
+
# Merge hub data with local data
|
| 63 |
+
hub_data_source = hub_data_dir / "data"
|
| 64 |
+
if hub_data_source.exists():
|
| 65 |
+
# Create data dir if it doesn't exist
|
| 66 |
+
data_dir.mkdir(exist_ok=True)
|
| 67 |
+
|
| 68 |
+
# Copy files from hub
|
| 69 |
+
for item in hub_data_source.glob("*"):
|
| 70 |
+
if item.is_dir():
|
| 71 |
+
dest = data_dir / item.name
|
| 72 |
+
if not dest.exists(): # Only copy if doesn't exist locally
|
| 73 |
+
shutil.copytree(item, dest)
|
| 74 |
+
|
| 75 |
+
# Clean up cloned repo
|
| 76 |
+
if hub_data_dir.exists():
|
| 77 |
+
shutil.rmtree(hub_data_dir)
|
| 78 |
+
print("Finished syncing with hub!")
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
scheduler = CommitScheduler(
|
| 82 |
+
repo_id=DATASET_REPO,
|
| 83 |
+
repo_type="dataset",
|
| 84 |
+
folder_path="./data",
|
| 85 |
+
path_in_repo="data",
|
| 86 |
+
every=1,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def load_question_data(question_id):
|
| 91 |
+
"""
|
| 92 |
+
Load a specific question's data
|
| 93 |
+
Returns a tuple of all form fields
|
| 94 |
+
"""
|
| 95 |
+
if not question_id:
|
| 96 |
+
return [None] * 11 # Reduced number of fields
|
| 97 |
+
|
| 98 |
+
# Extract the ID part before the colon from the dropdown selection
|
| 99 |
+
question_id = (
|
| 100 |
+
question_id.split(":")[0].strip() if ":" in question_id else question_id
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
json_path = os.path.join("./data", question_id, "question.json")
|
| 104 |
+
if not os.path.exists(json_path):
|
| 105 |
+
print(f"Question file not found: {json_path}")
|
| 106 |
+
return [None] * 11
|
| 107 |
+
|
| 108 |
+
try:
|
| 109 |
+
with open(json_path, "r", encoding="utf-8") as f:
|
| 110 |
+
data = json.loads(f.read().strip())
|
| 111 |
+
|
| 112 |
+
# Load images
|
| 113 |
+
def load_image(image_path):
|
| 114 |
+
if not image_path:
|
| 115 |
+
return None
|
| 116 |
+
full_path = os.path.join(
|
| 117 |
+
"./data", question_id, os.path.basename(image_path)
|
| 118 |
+
)
|
| 119 |
+
return full_path if os.path.exists(full_path) else None
|
| 120 |
+
|
| 121 |
+
question_images = data.get("question_images", [])
|
| 122 |
+
rationale_images = data.get("rationale_images", [])
|
| 123 |
+
|
| 124 |
+
return [
|
| 125 |
+
(
|
| 126 |
+
",".join(data["question_categories"])
|
| 127 |
+
if isinstance(data["question_categories"], list)
|
| 128 |
+
else data["question_categories"]
|
| 129 |
+
),
|
| 130 |
+
data["question"],
|
| 131 |
+
data["final_answer"],
|
| 132 |
+
data.get("rationale_text", ""),
|
| 133 |
+
load_image(question_images[0] if question_images else None),
|
| 134 |
+
load_image(question_images[1] if len(question_images) > 1 else None),
|
| 135 |
+
load_image(question_images[2] if len(question_images) > 2 else None),
|
| 136 |
+
load_image(question_images[3] if len(question_images) > 3 else None),
|
| 137 |
+
load_image(rationale_images[0] if rationale_images else None),
|
| 138 |
+
load_image(rationale_images[1] if len(rationale_images) > 1 else None),
|
| 139 |
+
question_id,
|
| 140 |
+
]
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"Error loading question {question_id}: {str(e)}")
|
| 143 |
+
return [None] * 11
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def load_post_image(post_id):
|
| 147 |
+
if not post_id:
|
| 148 |
+
return [None] * 21 # source image + 10 pairs of (image, text)
|
| 149 |
+
|
| 150 |
+
idx = POST_ID_TO_ID_MAP[post_id]
|
| 151 |
+
source_image = VALID_DATASET[idx]["image"]
|
| 152 |
+
|
| 153 |
+
# Load existing responses if any
|
| 154 |
+
post_folder = os.path.join("./data", str(post_id))
|
| 155 |
+
metadata_path = os.path.join(post_folder, "metadata.json")
|
| 156 |
+
|
| 157 |
+
if os.path.exists(metadata_path):
|
| 158 |
+
with open(metadata_path, "r") as f:
|
| 159 |
+
metadata = json.load(f)
|
| 160 |
+
|
| 161 |
+
# Initialize response data
|
| 162 |
+
responses = [(None, "")] * 10
|
| 163 |
+
|
| 164 |
+
# Fill in existing responses
|
| 165 |
+
for response in metadata["responses"]:
|
| 166 |
+
idx = response["response_id"]
|
| 167 |
+
if idx < 10: # Ensure we don't exceed our UI limit
|
| 168 |
+
image_path = os.path.join(post_folder, response["image_path"])
|
| 169 |
+
responses[idx] = (image_path, response["answer_text"])
|
| 170 |
+
|
| 171 |
+
# Flatten responses for output
|
| 172 |
+
flat_responses = [item for pair in responses for item in pair]
|
| 173 |
+
return [source_image] + flat_responses
|
| 174 |
+
|
| 175 |
+
# If no existing responses, return source image and empty responses
|
| 176 |
+
return [source_image] + [None] * 20
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def generate_json_files(source_image, responses, post_id):
|
| 180 |
+
"""
|
| 181 |
+
Save the source image and multiple responses to the data directory
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
source_image: Path to the source image
|
| 185 |
+
responses: List of (image, answer) tuples
|
| 186 |
+
post_id: The post ID from the dataset
|
| 187 |
+
"""
|
| 188 |
+
# Create parent data folder if it doesn't exist
|
| 189 |
+
parent_data_folder = "./data"
|
| 190 |
+
os.makedirs(parent_data_folder, exist_ok=True)
|
| 191 |
+
|
| 192 |
+
# Create/clear post_id folder
|
| 193 |
+
post_folder = os.path.join(parent_data_folder, str(post_id))
|
| 194 |
+
if os.path.exists(post_folder):
|
| 195 |
+
shutil.rmtree(post_folder)
|
| 196 |
+
os.makedirs(post_folder)
|
| 197 |
+
|
| 198 |
+
# Save source image
|
| 199 |
+
source_image_path = os.path.join(post_folder, "source_image.png")
|
| 200 |
+
if isinstance(source_image, str):
|
| 201 |
+
shutil.copy2(source_image, source_image_path)
|
| 202 |
+
else:
|
| 203 |
+
gr.processing_utils.save_image(source_image, source_image_path)
|
| 204 |
+
|
| 205 |
+
# Create responses data
|
| 206 |
+
responses_data = []
|
| 207 |
+
for idx, (response_image, answer_text) in enumerate(responses):
|
| 208 |
+
if response_image and answer_text: # Only process if both image and text exist
|
| 209 |
+
response_folder = os.path.join(post_folder, f"response_{idx}")
|
| 210 |
+
os.makedirs(response_folder)
|
| 211 |
+
|
| 212 |
+
# Save response image
|
| 213 |
+
response_image_path = os.path.join(response_folder, "response_image.png")
|
| 214 |
+
if isinstance(response_image, str):
|
| 215 |
+
shutil.copy2(response_image, response_image_path)
|
| 216 |
+
else:
|
| 217 |
+
gr.processing_utils.save_image(response_image, response_image_path)
|
| 218 |
+
|
| 219 |
+
# Add to responses data
|
| 220 |
+
responses_data.append(
|
| 221 |
+
{
|
| 222 |
+
"response_id": idx,
|
| 223 |
+
"answer_text": answer_text,
|
| 224 |
+
"image_path": f"response_{idx}/response_image.png",
|
| 225 |
+
}
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# Create metadata JSON
|
| 229 |
+
metadata = {
|
| 230 |
+
"post_id": post_id,
|
| 231 |
+
"source_image": "source_image.png",
|
| 232 |
+
"responses": responses_data,
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
# Save metadata
|
| 236 |
+
with open(os.path.join(post_folder, "metadata.json"), "w", encoding="utf-8") as f:
|
| 237 |
+
json.dump(metadata, f, ensure_ascii=False, indent=2)
|
| 238 |
+
|
| 239 |
+
return post_folder
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
# Build the Gradio app
|
| 243 |
+
with gr.Blocks() as demo:
|
| 244 |
+
gr.Markdown("# Image Response Collector")
|
| 245 |
+
|
| 246 |
+
# Source image selection at the top
|
| 247 |
+
with gr.Column():
|
| 248 |
+
post_id_dropdown = gr.Dropdown(
|
| 249 |
+
label="Select Post ID to Load Image",
|
| 250 |
+
choices=VALID_DATASET_POST_IDS,
|
| 251 |
+
type="value",
|
| 252 |
+
allow_custom_value=False,
|
| 253 |
+
)
|
| 254 |
+
source_image = gr.Image(label="Source Image", type="filepath")
|
| 255 |
+
|
| 256 |
+
# Responses in tabs
|
| 257 |
+
with gr.Tabs() as response_tabs:
|
| 258 |
+
responses = []
|
| 259 |
+
for i in range(10):
|
| 260 |
+
with gr.Tab(f"Response {i+1}"):
|
| 261 |
+
img = gr.Image(label=f"Response Image {i+1}", type="filepath")
|
| 262 |
+
txt = gr.Textbox(label=f"Model Name {i+1}", lines=2)
|
| 263 |
+
responses.append((img, txt))
|
| 264 |
+
|
| 265 |
+
with gr.Row():
|
| 266 |
+
submit_btn = gr.Button("Submit All Responses")
|
| 267 |
+
clear_btn = gr.Button("Clear Form")
|
| 268 |
+
|
| 269 |
+
def submit_responses(source_img, post_id, *response_data):
|
| 270 |
+
if not source_img:
|
| 271 |
+
gr.Warning("Please select a source image first!")
|
| 272 |
+
return
|
| 273 |
+
|
| 274 |
+
if not post_id:
|
| 275 |
+
gr.Warning("Please select a post ID first!")
|
| 276 |
+
return
|
| 277 |
+
|
| 278 |
+
# Convert flat response_data into pairs of (image, text)
|
| 279 |
+
response_pairs = list(zip(response_data[::2], response_data[1::2]))
|
| 280 |
+
|
| 281 |
+
# Filter out empty responses
|
| 282 |
+
valid_responses = [
|
| 283 |
+
(img, txt) for img, txt in response_pairs if img is not None and txt
|
| 284 |
+
]
|
| 285 |
+
|
| 286 |
+
if not valid_responses:
|
| 287 |
+
gr.Warning("Please provide at least one response (image + text)!")
|
| 288 |
+
return
|
| 289 |
+
|
| 290 |
+
generate_json_files(source_img, valid_responses, post_id)
|
| 291 |
+
gr.Info("Responses saved successfully! 🎉")
|
| 292 |
+
|
| 293 |
+
def clear_form():
|
| 294 |
+
outputs = [None] * (1 + 20) # 1 source image + 10 pairs of (image, text)
|
| 295 |
+
return outputs
|
| 296 |
+
|
| 297 |
+
# Connect components
|
| 298 |
+
post_id_dropdown.change(
|
| 299 |
+
fn=load_post_image,
|
| 300 |
+
inputs=[post_id_dropdown],
|
| 301 |
+
outputs=[source_image] + [comp for pair in responses for comp in pair],
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
submit_inputs = [source_image, post_id_dropdown] + [
|
| 305 |
+
comp for pair in responses for comp in pair
|
| 306 |
+
]
|
| 307 |
+
submit_btn.click(fn=submit_responses, inputs=submit_inputs)
|
| 308 |
+
|
| 309 |
+
clear_outputs = [source_image] + [comp for pair in responses for comp in pair]
|
| 310 |
+
clear_btn.click(fn=clear_form, outputs=clear_outputs)
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
def process_thread():
|
| 314 |
+
while True:
|
| 315 |
+
try:
|
| 316 |
+
pass
|
| 317 |
+
# process_and_push_dataset(
|
| 318 |
+
# "./data",
|
| 319 |
+
# FINAL_DATASET_REPO,
|
| 320 |
+
# token=os.environ["HF_TOKEN"],
|
| 321 |
+
# private=True,
|
| 322 |
+
# )
|
| 323 |
+
except Exception as e:
|
| 324 |
+
print(f"Error in process thread: {e}")
|
| 325 |
+
time.sleep(120) # Sleep for 2 minutes
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
if __name__ == "__main__":
|
| 329 |
+
print("Initializing app...")
|
| 330 |
+
sync_with_hub() # Sync before launching the app
|
| 331 |
+
print("Starting Gradio interface...")
|
| 332 |
+
|
| 333 |
+
# Start the processing thread when the app starts
|
| 334 |
+
processing_thread = threading.Thread(target=process_thread, daemon=True)
|
| 335 |
+
processing_thread.start()
|
| 336 |
+
|
| 337 |
+
demo.launch()
|
utils.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from datasets import Dataset, Features, Value, Sequence, Image as ImageFeature
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def process_and_push_dataset(
|
| 9 |
+
data_dir: str, hub_repo: str, token: str, private: bool = True
|
| 10 |
+
):
|
| 11 |
+
"""
|
| 12 |
+
Process local dataset files and push to Hugging Face Hub.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
data_dir (str): Path to the data directory containing submission folders
|
| 16 |
+
hub_repo (str): Name of the Hugging Face repository to push to
|
| 17 |
+
private (bool): Whether to make the pushed dataset private
|
| 18 |
+
|
| 19 |
+
Returns:
|
| 20 |
+
datasets.Dataset: The processed dataset
|
| 21 |
+
"""
|
| 22 |
+
# List to store all records
|
| 23 |
+
all_records = []
|
| 24 |
+
|
| 25 |
+
# Walk through all subdirectories in data_dir
|
| 26 |
+
for root, dirs, files in os.walk(data_dir):
|
| 27 |
+
for file in files:
|
| 28 |
+
if file == "question.json":
|
| 29 |
+
file_path = Path(root) / file
|
| 30 |
+
try:
|
| 31 |
+
# Read the JSON file
|
| 32 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 33 |
+
record = json.load(f)
|
| 34 |
+
|
| 35 |
+
# Get the folder path for this record
|
| 36 |
+
folder_path = os.path.dirname(file_path)
|
| 37 |
+
|
| 38 |
+
# Fix image paths to include full path
|
| 39 |
+
if "question_images" in record:
|
| 40 |
+
record["question_images"] = [
|
| 41 |
+
str(Path(folder_path) / img_path)
|
| 42 |
+
for img_path in record["question_images"]
|
| 43 |
+
if img_path
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
if "rationale_images" in record:
|
| 47 |
+
record["rationale_images"] = [
|
| 48 |
+
str(Path(folder_path) / img_path)
|
| 49 |
+
for img_path in record["rationale_images"]
|
| 50 |
+
if img_path
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
# Flatten author_info dictionary
|
| 54 |
+
author_info = record.pop("author_info", {})
|
| 55 |
+
record.update(
|
| 56 |
+
{f"author_{k}": v for k, v in author_info.items()}
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Add the record
|
| 60 |
+
all_records.append(record)
|
| 61 |
+
except Exception as e:
|
| 62 |
+
print(f"Error processing {file_path}: {e}")
|
| 63 |
+
|
| 64 |
+
# Convert to DataFrame
|
| 65 |
+
df = pd.DataFrame(all_records)
|
| 66 |
+
|
| 67 |
+
# Sort by custom_id for consistency
|
| 68 |
+
if not df.empty and "custom_id" in df.columns:
|
| 69 |
+
df = df.sort_values("custom_id")
|
| 70 |
+
|
| 71 |
+
# Ensure all required columns exist with default values
|
| 72 |
+
required_columns = {
|
| 73 |
+
"custom_id": "",
|
| 74 |
+
"author_name": "",
|
| 75 |
+
"author_email_address": "",
|
| 76 |
+
"author_institution": "",
|
| 77 |
+
"question_categories": [],
|
| 78 |
+
"question": "",
|
| 79 |
+
"question_images": [],
|
| 80 |
+
"final_answer": "",
|
| 81 |
+
"rationale_text": "",
|
| 82 |
+
"rationale_images": [],
|
| 83 |
+
"image_attribution": "",
|
| 84 |
+
"subquestions_1_text": "",
|
| 85 |
+
"subquestions_1_answer": "",
|
| 86 |
+
"subquestions_2_text": "",
|
| 87 |
+
"subquestions_2_answer": "",
|
| 88 |
+
"subquestions_3_text": "",
|
| 89 |
+
"subquestions_3_answer": "",
|
| 90 |
+
"subquestions_4_text": "",
|
| 91 |
+
"subquestions_4_answer": "",
|
| 92 |
+
"subquestions_5_text": "",
|
| 93 |
+
"subquestions_5_answer": "",
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
for col, default_value in required_columns.items():
|
| 97 |
+
if col not in df.columns:
|
| 98 |
+
df[col] = default_value
|
| 99 |
+
|
| 100 |
+
# Define features
|
| 101 |
+
features = Features(
|
| 102 |
+
{
|
| 103 |
+
"custom_id": Value("string"),
|
| 104 |
+
"question": Value("string"),
|
| 105 |
+
"question_images": Sequence(ImageFeature()),
|
| 106 |
+
"question_categories": Sequence(Value("string")),
|
| 107 |
+
"final_answer": Value("string"),
|
| 108 |
+
"rationale_text": Value("string"),
|
| 109 |
+
"rationale_images": Sequence(ImageFeature()),
|
| 110 |
+
"image_attribution": Value("string"),
|
| 111 |
+
"subquestions_1_text": Value("string"),
|
| 112 |
+
"subquestions_1_answer": Value("string"),
|
| 113 |
+
"subquestions_2_text": Value("string"),
|
| 114 |
+
"subquestions_2_answer": Value("string"),
|
| 115 |
+
"subquestions_3_text": Value("string"),
|
| 116 |
+
"subquestions_3_answer": Value("string"),
|
| 117 |
+
"subquestions_4_text": Value("string"),
|
| 118 |
+
"subquestions_4_answer": Value("string"),
|
| 119 |
+
"subquestions_5_text": Value("string"),
|
| 120 |
+
"subquestions_5_answer": Value("string"),
|
| 121 |
+
"author_name": Value("string"),
|
| 122 |
+
"author_email_address": Value("string"),
|
| 123 |
+
"author_institution": Value("string"),
|
| 124 |
+
}
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# Convert DataFrame to dict of lists (Hugging Face Dataset format)
|
| 128 |
+
dataset_dict = {col: df[col].tolist() for col in features.keys()}
|
| 129 |
+
|
| 130 |
+
# Create Dataset directly from dict
|
| 131 |
+
dataset = Dataset.from_dict(dataset_dict, features=features)
|
| 132 |
+
|
| 133 |
+
# Push to hub
|
| 134 |
+
dataset.push_to_hub(hub_repo, private=private, max_shard_size="200MB", token=token)
|
| 135 |
+
|
| 136 |
+
print(f"\nDataset Statistics:")
|
| 137 |
+
print(f"Total number of submissions: {len(dataset)}")
|
| 138 |
+
print(f"\nSuccessfully pushed dataset to {hub_repo}")
|
| 139 |
+
|
| 140 |
+
return dataset
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def save_metadata(post_id, metadata):
|
| 144 |
+
# Create directory named after post_id
|
| 145 |
+
directory = os.path.join("data", post_id)
|
| 146 |
+
os.makedirs(directory, exist_ok=True)
|
| 147 |
+
|
| 148 |
+
# Add post_id to metadata
|
| 149 |
+
metadata["post_id"] = post_id
|
| 150 |
+
|
| 151 |
+
# Save metadata to JSON file
|
| 152 |
+
metadata_path = os.path.join(directory, "metadata.json")
|
| 153 |
+
with open(metadata_path, "w") as f:
|
| 154 |
+
json.dump(metadata, f, indent=4)
|