tedlasai's picture
commit
199f9c2
import pickle
from torch.utils.data import Dataset
import cv2
import argparse
import glob
import random
import logging
import torch
import os
import numpy as np
import PIL
from PIL import Image, ImageDraw
from einops import rearrange
from urllib.parse import urlparse
from diffusers.utils import load_image
import math
# copy from https://github.com/crowsonkb/k-diffusion.git
def rand_log_normal(shape, loc=0., scale=1., device='cpu', dtype=torch.float32):
"""Draws samples from an lognormal distribution."""
u = torch.rand(shape, dtype=dtype, device=device) * (1 - 2e-7) + 1e-7
return torch.distributions.Normal(loc, scale).icdf(u).exp()
def encode_image(pixel_values, feature_extractor, image_encoder, weight_dtype, accelerator):
# pixel: [-1, 1]
pixel_values = _resize_with_antialiasing(pixel_values, (224, 224))
# We unnormalize it after resizing.
pixel_values = (pixel_values + 1.0) / 2.0
# Normalize the image with for CLIP input
pixel_values = feature_extractor(
images=pixel_values,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
pixel_values = pixel_values.to(
device=accelerator.device, dtype=weight_dtype)
image_embeddings = image_encoder(pixel_values).image_embeds
return image_embeddings
def get_add_time_ids(
fps,
motion_bucket_id,
noise_aug_strength,
dtype,
batch_size,
unet
):
add_time_ids = [fps, motion_bucket_id, noise_aug_strength]
passed_add_embed_dim = unet.config.addition_time_embed_dim * \
len(add_time_ids)
expected_add_embed_dim = unet.add_embedding.linear_1.in_features
if expected_add_embed_dim != passed_add_embed_dim:
raise ValueError(
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
)
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
add_time_ids = add_time_ids.repeat(batch_size, 1)
return add_time_ids
def find_scale(height, width):
"""
Finds a scale factor such that the number of pixels is less than 500,000
and the dimensions are rounded down to the nearest multiple of 64.
Args:
height (int): The original height of the image.
width (int): The original width of the image.
Returns:
tuple: The scaled height and width as integers.
"""
max_pixels = 500000
# Start with no scaling
scale = 1.0
while True:
# Calculate the scaled dimensions
scaled_height = math.floor((height * scale) / 64) * 64
scaled_width = math.floor((width * scale) / 64) * 64
# Check if the scaled dimensions meet the pixel constraint
if scaled_height * scaled_width <= max_pixels:
return scaled_height, scaled_width
# Reduce the scale slightly
scale -= 0.01
class OutsidePhotosDataset(Dataset):
def __init__(self, data_folder, width=1024, height=576, sample_frames=9):
self.data_folder = data_folder
self.scenes = sorted(glob.glob(os.path.join(data_folder, "*")))
#get images that end in .JPG,.jpg, .png
self.scenes = [scene for scene in self.scenes if scene.endswith(".JPG") or scene.endswith(".jpg") or scene.endswith(".png") or scene.endswith(".jpeg") or scene.endswith(".JPG")]
#make each scene a tuple anf for each scene, put it 9 times in the tuple - tuple should look like (scene_name, idx (0-8))
self.scenes = [(scene, idx) for scene in self.scenes for idx in range(9)]
self.num_scenes = len(self.scenes)
self.width = width
self.height = height
self.sample_frames = sample_frames
self.icc_profiles = [None]*self.num_scenes
def __len__(self):
return self.num_scenes
def __getitem__(self, idx):
#get the scene and the index
#create an empty tensor to store the pixel values and place the scene in the tensor (load and resize the image)
scene, focal_stack_num = self.scenes[idx]
with Image.open(scene) as img:
self.icc_profiles[idx] = img.info.get("icc_profile")
icc_profile = img.info.get("icc_profile")
if icc_profile is None:
icc_profile = "none"
original_pixels = torch.from_numpy(np.array(img)).float().permute(2,0,1)
original_pixels = original_pixels / 255
width, height = img.size
scaled_width, scaled_height = find_scale(width, height)
img_resized = img.resize((scaled_width, scaled_height))
img_tensor = torch.from_numpy(np.array(img_resized)).float()
img_normalized = img_tensor / 127.5 - 1
img_normalized = img_normalized.permute(2, 0, 1)
pixels = torch.zeros((self.sample_frames, 3, scaled_height, scaled_width))
pixels[focal_stack_num] = img_normalized
return {"pixel_values": pixels, "idx": idx//9, "focal_stack_num": focal_stack_num, "original_pixel_values": original_pixels, 'icc_profile': icc_profile}
class FocalStackDataset(Dataset):
def __init__(self, data_folder: str, splits_dir, split="train", num_samples=100000, width=640, height=896, sample_frames=9): #4.5
#800*600 - 480000
#896*672 - 602112
"""
Args:
num_samples (int): Number of samples in the dataset.
channels (int): Number of channels, default is 3 for RGB.
"""
self.num_samples = num_samples
self.sample_frames = sample_frames
# Define the path to the folder containing video frames
self.data_folder = data_folder
self.splits_dir = splits_dir
size = "midsize"
# Use glob to find matching folders
# List to store the desired paths
rig_directories = []
# Walk through the directory
for root, dirs, files in os.walk(data_folder):
# Check if the path matches "downscaled/undistorted/Rig*"
for directory in dirs:
if directory.startswith("RigCenter") and f"{size}/undistorted" in root.replace("\\", "/"):
rig_directory = os.path.join(root, directory)
#check that rig_directory contains all 9 images
if len(glob.glob(os.path.join(rig_directory, "*.jpg"))) == 9:
rig_directories.append(rig_directory)
self.scenes = sorted(rig_directories) #sort the files by name
if split == "train":
#shuffle the scenes
random.shuffle(self.scenes)
self.split = split
debug = False
if debug:
self.scenes = self.scenes[50:60]
elif split == "train":
pkl_file = os.path.join(self.splits_dir, "train_scenes.pkl")
#load the train scenes
with open(pkl_file, "rb") as f:
pkl_scenes = pickle.load(f)
#only get scenes that are found in pkl file
self.scenes = [scene for scene in self.scenes if scene.split('/')[-4] in pkl_scenes]
elif split == "val":
pkl_file = os.path.join(self.splits_dir, "test_scenes.pkl") #use first 10 test scenes for val (just for visualization)
#load the test scenes
with open(pkl_file, "rb") as f:
pkl_scenes = pickle.load(f)
#only get scenes that are found in pkl file
self.scenes = [scene for scene in self.scenes if scene.split('/')[-4] in pkl_scenes]
self.scenes = self.scenes[:10]
else:
pkl_file = os.path.join(self.splits_dir, "test_scenes.pkl")
#load the test scenes
with open(pkl_file, "rb") as f:
pkl_scenes = pickle.load(f)
#only get scenes that are found in pkl file
self.scenes = [scene for scene in self.scenes if scene.split('/')[-4] in pkl_scenes]
if split == "test":
self.scenes = [(scene, idx) for scene in self.scenes for idx in range(self.sample_frames)]
self.num_scenes = len(self.scenes)
max_trdata = 0
if max_trdata > 0:
self.scenes = self.scenes[:max_trdata]
self.data_store = {}
logging.info(f'Creating {split} dataset with {self.num_scenes} examples')
self.channels = 3
self.width = width
self.height = height
def __len__(self):
return self.num_scenes
def __getitem__(self, idx):
"""
Args:
idx (int): Index of the sample to return.
Returns:
dict: A dictionary containing the 'pixel_values' tensor of shape (16, channels, 320, 512).
"""
# Randomly select a folder (representing a video) from the base folder
if self.split == "test":
chosen_folder, focal_stack_num = self.scenes[idx]
else:
chosen_folder = self.scenes[idx]
frames = os.listdir(chosen_folder)
#get only frames that are jpg
frames = [frame for frame in frames if frame.endswith(".jpg")]
# Sort the frames by name
frames.sort()
#Pad the frames list out
selected_frames = frames[:self.sample_frames]
# Initialize a tensor to store the pixel values
pixel_values = torch.empty((self.sample_frames, self.channels, self.height, self.width))
original_pixel_values = torch.empty((self.sample_frames, self.channels, 896, 640))
# Load and process each frame
for i, frame_name in enumerate(selected_frames):
frame_path = os.path.join(chosen_folder, frame_name)
with Image.open(frame_path) as img:
# Resize the image and convert it to a tensor
img_resized = img.resize((self.width, self.height))
img_tensor = torch.from_numpy(np.array(img_resized)).float()
original_img_tensor = torch.from_numpy(np.array(img)).float()
# Normalize the image by scaling pixel values to [-1, 1]
img_normalized = img_tensor / 127.5 - 1
original_img_normalized = original_img_tensor / 127.5 - 1
# Rearrange channels if necessary
if self.channels == 3:
img_normalized = img_normalized.permute(
2, 0, 1) # For RGB images
original_img_normalized = original_img_normalized.permute(2, 0, 1)
pixel_values[i] = img_normalized
original_pixel_values[i] = original_img_normalized
if self.sample_frames == 10: #special case for 10 frames where we duplicate the 9th frame (sometimes reduced color artifacts)
pixel_values[9] = pixel_values[8]
original_pixel_values[9] = original_pixel_values[8]
out_dict = {'pixel_values': pixel_values, "idx": idx, "original_pixel_values": original_pixel_values}
if self.split == "test":
out_dict["focal_stack_num"] = focal_stack_num
out_dict["idx"] = idx//9
return out_dict
# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = _gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(
input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(
device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = _compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(
input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device,
dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = _filter2d(input, kernel_x[..., None, :])
out = _filter2d(out_x, kernel_y[..., None])
return out
def export_to_video(video_frames, output_video_path, fps):
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
h, w, _ = video_frames[0].shape
video_writer = cv2.VideoWriter(
output_video_path, fourcc, fps=fps, frameSize=(w, h))
for i in range(len(video_frames)):
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)
video_writer.write(img)
def export_to_gif(frames, output_gif_path, fps):
"""
Export a list of frames to a GIF.
Args:
- frames (list): List of frames (as numpy arrays or PIL Image objects).
- output_gif_path (str): Path to save the output GIF.
- duration_ms (int): Duration of each frame in milliseconds.
"""
# Convert numpy arrays to PIL Images if needed
pil_frames = [Image.fromarray(frame) if isinstance(
frame, np.ndarray) else frame for frame in frames]
pil_frames[0].save(output_gif_path.replace('.mp4', '.gif'),
format='GIF',
append_images=pil_frames[1:],
save_all=True,
duration=500,
loop=0)
def tensor_to_vae_latent(t, vae, otype="sample"):
video_length = t.shape[1]
t = rearrange(t, "b f c h w -> (b f) c h w")
if otype == "sample":
latents = vae.encode(t).latent_dist.sample()
else:
latents = vae.encode(t).latent_dist.mode()
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length)
latents = latents * vae.config.scaling_factor
return latents
import yaml
def parse_config(config_path="config.yaml"):
with open(config_path, "r") as f:
config = yaml.safe_load(f)
# handle distributed training rank
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != config.get("local_rank", -1):
config["local_rank"] = env_local_rank
# default fallback: non_ema_revision = revision
if config.get("non_ema_revision") is None:
config["non_ema_revision"] = config.get("revision")
return config
def parse_args():
parser = argparse.ArgumentParser(description="SVD Training Script")
parser.add_argument(
"--config",
type=str,
default="svd/scripts/training/configs/stage1_base.yaml",
help="Path to the config file.",
)
args = parser.parse_args()
# load YAML and merge into args
config = parse_config(args.config)
# combine yaml + command line args (command line has priority)
for k, v in vars(args).items():
if v is not None:
config[k] = v
# convert dict to argparse.Namespace for downstream compatibility
args = argparse.Namespace(**config)
print("OUTPUT DIR: ", args.output_dir)
return args
def download_image(url):
original_image = (
lambda image_url_or_path: load_image(image_url_or_path)
if urlparse(image_url_or_path).scheme
else PIL.Image.open(image_url_or_path).convert("RGB")
)(url)
return original_image