Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| from openai import OpenAI | |
| from openai.error import BadRequestError | |
| # Retrieve the Hugging Face API token from environment variables | |
| TOKEN = os.getenv("HF_TOKEN") | |
| if not TOKEN: | |
| raise ValueError("Hugging Face API token (HF_TOKEN) not set in environment variables.") | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| api_key=TOKEN, | |
| ) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message}] | |
| for user_message, assistant_message in history: | |
| if user_message: | |
| messages.append({"role": "user", "content": user_message}) | |
| if assistant_message: | |
| messages.append({"role": "assistant", "content": assistant_message}) | |
| messages.append({"role": "user", "content": message}) | |
| try: | |
| response = "" | |
| for msg in client.chat.completions.create( | |
| model="meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| messages=messages, | |
| ): | |
| token = msg.choices[0].delta.content | |
| response += token | |
| yield response | |
| except BadRequestError as e: | |
| error_message = f"Error: {e}. Please ensure your Hugging Face token is valid and you have a Pro subscription." | |
| yield error_message | |
| # Define the Gradio interface | |
| demo = gr.ChatInterface( | |
| fn=respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |