Multi_algo_HP_dict = { 'IForest': { 'n_estimators': [25, 50, 100, 150, 200], 'max_features': [0.2, 0.4, 0.6, 0.8, 1.0] }, 'LOF': { 'n_neighbors': [10, 20, 30, 40, 50], 'metric': ['minkowski', 'manhattan', 'euclidean'] }, 'PCA': { 'n_components': [0.25, 0.5, 0.75, None] }, 'HBOS': { 'n_bins': [5, 10, 20, 30, 40], 'tol': [0.1, 0.3, 0.5, 0.7] }, 'OCSVM': { 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'], 'nu': [0.1, 0.3, 0.5, 0.7] }, 'MCD': { 'support_fraction': [0.2, 0.4, 0.6, 0.8, None] }, 'KNN': { 'n_neighbors': [10, 20, 30, 40, 50], 'method': ['largest', 'mean', 'median'] }, 'KMeansAD': { 'n_clusters': [10, 20, 30, 40], 'window_size': [10, 20, 30, 40] }, 'COPOD': { 'HP': [None] }, 'CBLOF': { 'n_clusters': [4, 8, 16, 32], 'alpha': [0.6, 0.7, 0.8, 0.9] }, 'EIF': { 'n_trees': [25, 50, 100, 200] }, 'RobustPCA': { 'max_iter': [500, 1000, 1500] }, 'AutoEncoder': { 'hidden_neurons': [[64, 32], [32, 16], [128, 64]] }, 'CNN': { 'window_size': [50, 100, 150], 'num_channel': [[32, 32, 40], [16, 32, 64]] }, 'LSTMAD': { 'window_size': [50, 100, 150], 'lr': [0.0004, 0.0008] }, 'TranAD': { 'win_size': [5, 10, 50], 'lr': [1e-3, 1e-4] }, 'AnomalyTransformer': { 'win_size': [50, 100, 150], 'lr': [1e-3, 1e-4, 1e-5] }, 'OmniAnomaly': { 'win_size': [5, 50, 100], 'lr': [0.002, 0.0002] }, 'USAD': { 'win_size': [5, 50, 100], 'lr': [1e-3, 1e-4, 1e-5] }, 'Donut': { 'win_size': [60, 90, 120], 'lr': [1e-3, 1e-4, 1e-5] }, 'TimesNet': { 'win_size': [32, 96, 192], 'lr': [1e-3, 1e-4, 1e-5] }, 'FITS': { 'win_size': [100, 200], 'lr': [1e-3, 1e-4, 1e-5] }, 'OFA': { 'win_size': [50, 100, 150] }, 'Time_RCD': { 'win_size': 7000 }, 'TSPulse': { 'win_size': [64, 128, 256], 'batch_size': [32, 64, 128], 'aggregation_length': [32, 64, 128], 'aggr_function': ['max', 'mean'], 'smoothing_length': [4, 8, 16] } } Optimal_Multi_algo_HP_dict = { 'IForest': {'n_estimators': 25, 'max_features': 0.8}, 'LOF': {'n_neighbors': 50, 'metric': 'euclidean'}, 'PCA': {'n_components': 0.25}, 'HBOS': {'n_bins': 30, 'tol': 0.5}, 'OCSVM': {'kernel': 'rbf', 'nu': 0.1}, 'MCD': {'support_fraction': 0.8}, 'KNN': {'n_neighbors': 50, 'method': 'mean'}, 'KMeansAD': {'n_clusters': 10, 'window_size': 40}, 'KShapeAD': {'n_clusters': 20, 'window_size': 40}, 'COPOD': {'n_jobs':1}, 'CBLOF': {'n_clusters': 4, 'alpha': 0.6}, 'EIF': {'n_trees': 50}, 'RobustPCA': {'max_iter': 1000}, 'AutoEncoder': {'hidden_neurons': [128, 64]}, 'CNN': {'window_size': 50, 'num_channel': [32, 32, 40]}, 'LSTMAD': {'window_size': 150, 'lr': 0.0008}, 'TranAD': {'win_size': 10, 'lr': 0.001}, 'AnomalyTransformer': {'win_size': 50, 'lr': 0.001}, 'OmniAnomaly': {'win_size': 100, 'lr': 0.002}, 'USAD': {'win_size': 100, 'lr': 0.001}, 'Donut': {'win_size': 60, 'lr': 0.001}, 'TimesNet': {'win_size': 96, 'lr': 0.0001}, 'FITS': {'win_size': 100, 'lr': 0.001}, 'OFA': {'win_size': 50}, 'Time_RCD': {'win_size':5000, 'batch_size': 1}, 'DADA': {'win_size': 100, 'batch_size': 64}, 'TSPulse': {'win_size': 96 , 'batch_size': 64, 'aggregation_length': 64, 'aggr_function': 'max', 'smoothing_length': 8} } Uni_algo_HP_dict = { 'Sub_IForest': { 'periodicity': [1, 2, 3], 'n_estimators': [25, 50, 100, 150, 200] }, 'IForest': { 'n_estimators': [25, 50, 100, 150, 200] }, 'Sub_LOF': { 'periodicity': [1, 2, 3], 'n_neighbors': [10, 20, 30, 40, 50] }, 'LOF': { 'n_neighbors': [10, 20, 30, 40, 50] }, 'POLY': { 'periodicity': [1, 2, 3], 'power': [1, 2, 3, 4] }, 'MatrixProfile': { 'periodicity': [1, 2, 3] }, 'NORMA': { 'periodicity': [1, 2, 3], 'clustering': ['hierarchical', 'kshape'] }, 'SAND': { 'periodicity': [1, 2, 3] }, 'Series2Graph': { 'periodicity': [1, 2, 3] }, 'Sub_PCA': { 'periodicity': [1, 2, 3], 'n_components': [0.25, 0.5, 0.75, None] }, 'Sub_HBOS': { 'periodicity': [1, 2, 3], 'n_bins': [5, 10, 20, 30, 40] }, 'Sub_OCSVM': { 'periodicity': [1, 2, 3], 'kernel': ['linear', 'poly', 'rbf', 'sigmoid'] }, 'Sub_MCD': { 'periodicity': [1, 2, 3], 'support_fraction': [0.2, 0.4, 0.6, 0.8, None] }, 'Sub_KNN': { 'periodicity': [1, 2, 3], 'n_neighbors': [10, 20, 30, 40, 50], }, 'KMeansAD_U': { 'periodicity': [1, 2, 3], 'n_clusters': [10, 20, 30, 40], }, 'KShapeAD': { 'periodicity': [1, 2, 3] }, 'AutoEncoder': { 'window_size': [50, 100, 150], 'hidden_neurons': [[64, 32], [32, 16], [128, 64]] }, 'CNN': { 'window_size': [50, 100, 150], 'num_channel': [[32, 32, 40], [16, 32, 64]] }, 'LSTMAD': { 'window_size': [50, 100, 150], 'lr': [0.0004, 0.0008] }, 'TranAD': { 'win_size': [5, 10, 50], 'lr': [1e-3, 1e-4] }, 'AnomalyTransformer': { 'win_size': [50, 100, 150], 'lr': [1e-3, 1e-4, 1e-5] }, 'OmniAnomaly': { 'win_size': [5, 50, 100], 'lr': [0.002, 0.0002] }, 'USAD': { 'win_size': [5, 50, 100], 'lr': [1e-3, 1e-4, 1e-5] }, 'Donut': { 'win_size': [60, 90, 120], 'lr': [1e-3, 1e-4, 1e-5] }, 'TimesNet': { 'win_size': [32, 96, 192], 'lr': [1e-3, 1e-4, 1e-5] }, 'FITS': { 'win_size': [100, 200], 'lr': [1e-3, 1e-4, 1e-5] }, 'OFA': { 'win_size': [50, 100, 150] }, # 'Time_RCD': { # 'win_size': [1000, 2000, 3000, 4000, 5000, 6000, 8000, 10000], # 'batch_size': [32, 64, 128] # } } Optimal_Uni_algo_HP_dict = { 'Sub_IForest': {'periodicity': 1, 'n_estimators': 150}, 'IForest': {'n_estimators': 200}, 'Sub_LOF': {'periodicity': 2, 'n_neighbors': 30}, 'LOF': {'n_neighbors': 50}, 'POLY': {'periodicity': 1, 'power': 4}, 'MatrixProfile': {'periodicity': 1}, 'NORMA': {'periodicity': 1, 'clustering': 'kshape'}, 'SAND': {'periodicity': 1}, 'Series2Graph': {'periodicity': 1}, 'SR': {'periodicity': 1}, 'Sub_PCA': {'periodicity': 1, 'n_components': None}, 'Sub_HBOS': {'periodicity': 1, 'n_bins': 10}, 'Sub_OCSVM': {'periodicity': 2, 'kernel': 'rbf'}, 'Sub_MCD': {'periodicity': 3, 'support_fraction': None}, 'Sub_KNN': {'periodicity': 2, 'n_neighbors': 50}, 'KMeansAD_U': {'periodicity': 2, 'n_clusters': 10}, 'KShapeAD': {'periodicity': 1}, 'FFT': {}, 'Left_STAMPi': {}, 'AutoEncoder': {'window_size': 100, 'hidden_neurons': [128, 64]}, 'CNN': {'window_size': 50, 'num_channel': [32, 32, 40]}, 'LSTMAD': {'window_size': 100, 'lr': 0.0008}, 'TranAD': {'win_size': 10, 'lr': 0.0001}, 'AnomalyTransformer': {'win_size': 50, 'lr': 0.001}, 'OmniAnomaly': {'win_size': 5, 'lr': 0.002}, 'USAD': {'win_size': 100, 'lr': 0.001}, 'Donut': {'win_size': 60, 'lr': 0.0001}, 'TimesNet': {'win_size': 32, 'lr': 0.0001}, 'FITS': {'win_size': 100, 'lr': 0.0001}, 'OFA': {'win_size': 50}, 'Lag_Llama': {'win_size': 96}, 'Chronos': {'win_size': 100}, 'TimesFM': {'win_size': 96}, 'MOMENT_ZS': {'win_size': 64}, 'MOMENT_FT': {'win_size': 64}, 'M2N2': {}, 'DADA': {'win_size': 100}, 'Time_MOE': {'win_size':96}, 'Time_RCD': {'win_size':5000, 'batch_size': 64}, 'Time_RCD_Reconstruction': {'win_size':5000, 'batch_size': 128}, 'Time_RCD_Reconstruction_Anomaly_Head': {'win_size':5000, 'batch_size': 128}, 'Time_RCD_Reconstruction_Random_Mask_Anomaly_Head': {'win_size':5000, 'batch_size': 128}, 'TSPulse': {'win_size':96, 'batch_size': 64, 'aggregation_length': 64, 'aggr_function': 'max', 'smoothing_length': 8} }