Spaces:
Runtime error
Runtime error
| import gradio | |
| from transformers import pipeline | |
| # Merge split tokens starting with '##' | |
| def merge_split_tokens(tokens): | |
| merged_tokens = [] | |
| for token in tokens: | |
| if token["word"].startswith('##'): | |
| merged_tokens[-1]["word"] += token["word"][2:] | |
| else: | |
| merged_tokens.append(token) | |
| return merged_tokens | |
| def process_swedish_text(text): | |
| # Models from https://huggingface.co/models | |
| # https://huggingface.co/KBLab/bert-base-swedish-cased-ner | |
| nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner') | |
| # Run NER | |
| nlp_results = nlp(text) | |
| print('nlp_results:', nlp_results) | |
| nlp_results_merged = merge_split_tokens(nlp_results) | |
| # Fix TypeError("'numpy.float32' object is not iterable") | |
| nlp_results_adjusted = map(lambda entity: dict(entity, **{ 'score': float(entity['score']) }), nlp_results_merged) | |
| print('nlp_results_adjusted:', nlp_results_adjusted) | |
| # Return values | |
| return {'entities': list(nlp_results_adjusted)} | |
| gradio_interface = gradio.Interface( | |
| fn=process_swedish_text, | |
| inputs="text", | |
| outputs="json", | |
| examples=[ | |
| ["Jag heter Tom och bor i Stockholm."], | |
| ["Groens malmgård är en av Stockholms malmgårdar, belägen vid Malmgårdsvägen 53 på Södermalm i Stockholm."] | |
| ], | |
| title="Swedish Entity Recognition", | |
| description="Recognizing Swedish tokens e.g. locations and person names.", | |
| article="© Tom Söderlund 2022" | |
| ) | |
| gradio_interface.launch() | |