init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +35 -35
- app.py +409 -0
- configs/computer/a100.yaml +8 -0
- configs/computer/cluster-node-a100.yaml +8 -0
- configs/computer/cluster-node-v100.yaml +8 -0
- configs/computer/cpu.yaml +8 -0
- configs/computer/v100.yaml +8 -0
- configs/config.yaml +89 -0
- configs/dataset/baselines/im2gps.yaml +16 -0
- configs/dataset/baselines/im2gps3k.yaml +16 -0
- configs/dataset/baselines/yfcc4k.yaml +16 -0
- configs/dataset/osv5m.yaml +46 -0
- configs/dataset/osv5m_contrastive.yaml +34 -0
- configs/dataset/osv5m_contrastive_best.yaml +37 -0
- configs/dataset/osv5m_text_contrastive.yaml +34 -0
- configs/dataset/test_transform/center_crop.yaml +12 -0
- configs/dataset/test_transform/clip.yaml +2 -0
- configs/dataset/test_transform/fast_clip.yaml +12 -0
- configs/dataset/test_transform/fast_resnet.yaml +12 -0
- configs/dataset/test_transform/none.yaml +6 -0
- configs/dataset/train_transform/augmentation.yaml +85 -0
- configs/dataset/train_transform/center_crop.yaml +14 -0
- configs/dataset/train_transform/clip.yaml +2 -0
- configs/dataset/train_transform/fast_clip.yaml +12 -0
- configs/dataset/train_transform/fast_resnet.yaml +12 -0
- configs/dataset/train_transform/none.yaml +7 -0
- configs/exp/DinoV2.yaml +18 -0
- configs/exp/ResNet.yaml +21 -0
- configs/exp/base_model.yaml +19 -0
- configs/exp/best_model.yaml +25 -0
- configs/exp/classification_area.yaml +19 -0
- configs/exp/classification_cell.yaml +19 -0
- configs/exp/classification_cell_hier.yaml +20 -0
- configs/exp/classification_city.yaml +19 -0
- configs/exp/classification_city_hier.yaml +20 -0
- configs/exp/classification_country.yaml +19 -0
- configs/exp/classification_region copy.yaml +19 -0
- configs/exp/classification_region.yaml +19 -0
- configs/exp/clip_L_14_DataComp.yaml +18 -0
- configs/exp/clip_L_14_Laion.yaml +18 -0
- configs/exp/clip_L_14_OpenAI.yaml +18 -0
- configs/exp/clip_bigG_14_Laion.yaml +18 -0
- configs/exp/contrastive_area.yaml +20 -0
- configs/exp/contrastive_cell.yaml +20 -0
- configs/exp/contrastive_city.yaml +20 -0
- configs/exp/contrastive_country.yaml +20 -0
- configs/exp/contrastive_region.yaml +20 -0
- configs/exp/contrastive_text.yaml +22 -0
- configs/exp/eval_best_model.yaml +29 -0
- configs/exp/fine_tuning.yaml +20 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,35 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import torch
|
| 4 |
+
from torchvision import transforms
|
| 5 |
+
import pydeck as pdk
|
| 6 |
+
from geopy.geocoders import Nominatim
|
| 7 |
+
import time
|
| 8 |
+
import requests
|
| 9 |
+
from io import BytesIO
|
| 10 |
+
import reverse_geocoder as rg
|
| 11 |
+
from bs4 import BeautifulSoup
|
| 12 |
+
from urllib.parse import urljoin
|
| 13 |
+
from models.huggingface import Geolocalizer
|
| 14 |
+
import spacy
|
| 15 |
+
from collections import Counter
|
| 16 |
+
from spacy.cli import download
|
| 17 |
+
from typing import Tuple, List, Optional, Union, Dict
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def load_spacy_model(model_name: str = "en_core_web_md") -> spacy.Language:
|
| 21 |
+
"""
|
| 22 |
+
Load the specified spaCy model.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
model_name (str): Name of the spaCy model to load.
|
| 26 |
+
|
| 27 |
+
Returns:
|
| 28 |
+
spacy.Language: Loaded spaCy model.
|
| 29 |
+
"""
|
| 30 |
+
try:
|
| 31 |
+
return spacy.load(model_name)
|
| 32 |
+
except IOError:
|
| 33 |
+
print(f"Model {model_name} not found, downloading...")
|
| 34 |
+
download(model_name)
|
| 35 |
+
return spacy.load(model_name)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
nlp = load_spacy_model()
|
| 39 |
+
|
| 40 |
+
IMAGE_SIZE = (224, 224)
|
| 41 |
+
GEOLOC_MODEL_NAME = "osv5m/baseline"
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
@st.cache_resource(show_spinner=True)
|
| 45 |
+
def load_geoloc_model() -> Optional[Geolocalizer]:
|
| 46 |
+
"""
|
| 47 |
+
Load the geolocation model.
|
| 48 |
+
|
| 49 |
+
Returns:
|
| 50 |
+
Optional[Geolocalizer]: Loaded geolocation model or None if loading fails.
|
| 51 |
+
"""
|
| 52 |
+
with st.spinner('Loading model...'):
|
| 53 |
+
try:
|
| 54 |
+
model = Geolocalizer.from_pretrained(GEOLOC_MODEL_NAME)
|
| 55 |
+
model.eval()
|
| 56 |
+
return model
|
| 57 |
+
except Exception as e:
|
| 58 |
+
st.error(f"Failed to load the model: {e}")
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def most_frequent_locations(text: str) -> Tuple[str, List[str]]:
|
| 63 |
+
"""
|
| 64 |
+
Find the most frequent locations mentioned in the text.
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
text (str): Input text to analyze.
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
Tuple[str, List[str]]: Description of the most mentioned locations and a list of those locations.
|
| 71 |
+
"""
|
| 72 |
+
doc = nlp(text)
|
| 73 |
+
locations = []
|
| 74 |
+
|
| 75 |
+
for ent in doc.ents:
|
| 76 |
+
if ent.label_ in ['LOC', 'GPE']:
|
| 77 |
+
print(f"Entity: {ent.text} | Label: {ent.label_} | Sentence: {ent.sent}")
|
| 78 |
+
locations.append(ent.text)
|
| 79 |
+
|
| 80 |
+
if locations:
|
| 81 |
+
location_counts = Counter(locations)
|
| 82 |
+
most_common_locations = location_counts.most_common(2)
|
| 83 |
+
common_locations_str = ', '.join([f"{loc[0]} ({loc[1]} occurrences)" for loc in most_common_locations])
|
| 84 |
+
return f"Most Mentioned Locations: {common_locations_str}", [loc[0] for loc in most_common_locations]
|
| 85 |
+
else:
|
| 86 |
+
return "No locations found", []
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def transform_image(image: Image) -> torch.Tensor:
|
| 90 |
+
"""
|
| 91 |
+
Transform the input image for model prediction.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
image (Image): Input image.
|
| 95 |
+
|
| 96 |
+
Returns:
|
| 97 |
+
torch.Tensor: Transformed image tensor.
|
| 98 |
+
"""
|
| 99 |
+
transform = transforms.Compose([
|
| 100 |
+
transforms.Resize(IMAGE_SIZE),
|
| 101 |
+
transforms.ToTensor(),
|
| 102 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
| 103 |
+
])
|
| 104 |
+
return transform(image).unsqueeze(0)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def check_location_match(location_query: dict, most_common_locations: List[str]) -> bool:
|
| 108 |
+
"""
|
| 109 |
+
Check if the predicted location matches any of the most common locations.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
location_query (dict): Predicted location details.
|
| 113 |
+
most_common_locations (List[str]): List of most common locations.
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
bool: True if a match is found, False otherwise.
|
| 117 |
+
"""
|
| 118 |
+
name = location_query['name']
|
| 119 |
+
admin1 = location_query['admin1']
|
| 120 |
+
cc = location_query['cc']
|
| 121 |
+
|
| 122 |
+
for loc in most_common_locations:
|
| 123 |
+
if name in loc and admin1 in loc and cc in loc:
|
| 124 |
+
return True
|
| 125 |
+
return False
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def get_city_geojson(location_name: str) -> Optional[dict]:
|
| 129 |
+
"""
|
| 130 |
+
Fetch the GeoJSON data for the specified city.
|
| 131 |
+
|
| 132 |
+
Args:
|
| 133 |
+
location_name (str): Name of the city.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
Optional[dict]: GeoJSON data of the city or None if fetching fails.
|
| 137 |
+
"""
|
| 138 |
+
geolocator = Nominatim(user_agent="predictGeolocforImage")
|
| 139 |
+
try:
|
| 140 |
+
location = geolocator.geocode(location_name, geometry='geojson')
|
| 141 |
+
return location.raw['geojson'] if location else None
|
| 142 |
+
except Exception as e:
|
| 143 |
+
st.error(f"Failed to geocode location: {e}")
|
| 144 |
+
return None
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def get_media(url: str) -> Optional[List[Tuple[str, str]]]:
|
| 148 |
+
"""
|
| 149 |
+
Fetch media URLs and associated text from the specified URL.
|
| 150 |
+
|
| 151 |
+
Args:
|
| 152 |
+
url (str): URL to fetch media from.
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
Optional[List[Tuple[str, str]]]: List of tuples containing media URLs and associated text or None if fetching fails.
|
| 156 |
+
"""
|
| 157 |
+
try:
|
| 158 |
+
response = requests.get(url)
|
| 159 |
+
response.raise_for_status()
|
| 160 |
+
data = response.json()
|
| 161 |
+
return [(media['media_url'], entry['full_text'])
|
| 162 |
+
for entry in data for media in entry.get('media', []) if 'media_url' in media]
|
| 163 |
+
except requests.RequestException as e:
|
| 164 |
+
st.error(f"Failed to fetch media URL: {e}")
|
| 165 |
+
return None
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def predict_location(image: Image, model: Geolocalizer) -> Optional[Tuple[List[float], dict, Optional[dict], float]]:
|
| 169 |
+
"""
|
| 170 |
+
Predict the location from the input image using the specified model.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
image (Image): Input image.
|
| 174 |
+
model (Geolocalizer): Geolocation model.
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
Optional[Tuple[List[float], dict, Optional[dict], float]]: Predicted GPS coordinates, location query, city GeoJSON data, and processing time or None if prediction fails.
|
| 178 |
+
"""
|
| 179 |
+
with st.spinner('Processing image and predicting location...'):
|
| 180 |
+
start_time = time.time()
|
| 181 |
+
try:
|
| 182 |
+
img_tensor = transform_image(image)
|
| 183 |
+
gps_radians = model(img_tensor)
|
| 184 |
+
gps_degrees = torch.rad2deg(gps_radians).squeeze(0).cpu().tolist()
|
| 185 |
+
location_query = rg.search((gps_degrees[0], gps_degrees[1]))[0]
|
| 186 |
+
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
| 187 |
+
city_geojson = get_city_geojson(location_name)
|
| 188 |
+
processing_time = time.time() - start_time
|
| 189 |
+
return gps_degrees, location_query, city_geojson, processing_time
|
| 190 |
+
except Exception as e:
|
| 191 |
+
st.error(f"Failed to predict the location: {e}")
|
| 192 |
+
return None
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def display_map(city_geojson: dict, gps_degrees: List[float]) -> None:
|
| 196 |
+
"""
|
| 197 |
+
Display a map with the specified city GeoJSON data and GPS coordinates.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
city_geojson (dict): GeoJSON data of the city.
|
| 201 |
+
gps_degrees (List[float]): GPS coordinates.
|
| 202 |
+
"""
|
| 203 |
+
map_view = pdk.Deck(
|
| 204 |
+
map_style='mapbox://styles/mapbox/light-v9',
|
| 205 |
+
initial_view_state=pdk.ViewState(
|
| 206 |
+
latitude=gps_degrees[0],
|
| 207 |
+
longitude=gps_degrees[1],
|
| 208 |
+
zoom=8,
|
| 209 |
+
pitch=0,
|
| 210 |
+
),
|
| 211 |
+
layers=[
|
| 212 |
+
pdk.Layer(
|
| 213 |
+
'GeoJsonLayer',
|
| 214 |
+
data=city_geojson,
|
| 215 |
+
get_fill_color=[255, 180, 0, 140],
|
| 216 |
+
pickable=True,
|
| 217 |
+
stroked=True,
|
| 218 |
+
filled=True,
|
| 219 |
+
extruded=False,
|
| 220 |
+
line_width_min_pixels=1,
|
| 221 |
+
),
|
| 222 |
+
],
|
| 223 |
+
)
|
| 224 |
+
st.pydeck_chart(map_view)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def display_image(image_url: str) -> None:
|
| 228 |
+
"""
|
| 229 |
+
Display an image from the specified URL.
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
image_url (str): URL of the image.
|
| 233 |
+
"""
|
| 234 |
+
try:
|
| 235 |
+
response = requests.get(image_url)
|
| 236 |
+
response.raise_for_status()
|
| 237 |
+
image_bytes = BytesIO(response.content)
|
| 238 |
+
st.image(image_bytes, caption=f'Image from URL: {image_url}', use_column_width=True)
|
| 239 |
+
except requests.RequestException as e:
|
| 240 |
+
st.error(f"Failed to fetch image at URL {image_url}: {e}")
|
| 241 |
+
except Exception as e:
|
| 242 |
+
st.error(f"An error occurred: {e}")
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def scrape_webpage(url: str) -> Union[Tuple[Optional[str], Optional[List[str]]], Tuple[None, None]]:
|
| 246 |
+
"""
|
| 247 |
+
Scrape the specified webpage for text and images.
|
| 248 |
+
|
| 249 |
+
Args:
|
| 250 |
+
url (str): URL of the webpage to scrape.
|
| 251 |
+
|
| 252 |
+
Returns:
|
| 253 |
+
Union[Tuple[Optional[str], Optional[List[str]]], Tuple[None, None]]: Extracted text and list of image URLs or None if scraping fails.
|
| 254 |
+
"""
|
| 255 |
+
with st.spinner('Scraping web page...'):
|
| 256 |
+
try:
|
| 257 |
+
response = requests.get(url)
|
| 258 |
+
response.raise_for_status()
|
| 259 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 260 |
+
base_url = url # Adjust based on <base> tags or other HTML clues
|
| 261 |
+
text = ''.join(p.text for p in soup.find_all('p'))
|
| 262 |
+
images = [urljoin(base_url, img['src']) for img in soup.find_all('img') if 'src' in img.attrs]
|
| 263 |
+
return text, images
|
| 264 |
+
except requests.RequestException as e:
|
| 265 |
+
st.error(f"Failed to fetch and parse the URL: {e}")
|
| 266 |
+
return None, None
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def main() -> None:
|
| 270 |
+
"""
|
| 271 |
+
Main function to run the Streamlit app.
|
| 272 |
+
"""
|
| 273 |
+
st.title('Welcome to Geolocation Guesstimation Demo 👋')
|
| 274 |
+
|
| 275 |
+
page = st.sidebar.selectbox(
|
| 276 |
+
"Choose your action:",
|
| 277 |
+
("Home", "Images", "Social Media", "Web Pages"),
|
| 278 |
+
index=0
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
st.sidebar.success("Select a demo above.")
|
| 282 |
+
st.sidebar.info(
|
| 283 |
+
"""
|
| 284 |
+
- Web App URL: <https://yunusserhat-guesstimatelocation.hf.space/>
|
| 285 |
+
"""
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
st.sidebar.title("Contact")
|
| 289 |
+
st.sidebar.info(
|
| 290 |
+
"""
|
| 291 |
+
Yunus Serhat Bıçakçı at [yunusserhat.com](https://yunusserhat.com) | [GitHub](https://github.com/yunusserhat) | [Twitter](https://twitter.com/yunusserhat) | [LinkedIn](https://www.linkedin.com/in/yunusserhat)
|
| 292 |
+
"""
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
if page == "Home":
|
| 296 |
+
st.write("Welcome to the Geolocation Predictor. Please select an action from the sidebar dropdown.")
|
| 297 |
+
|
| 298 |
+
elif page == "Images":
|
| 299 |
+
upload_images_page()
|
| 300 |
+
|
| 301 |
+
elif page == "Social Media":
|
| 302 |
+
social_media_page()
|
| 303 |
+
|
| 304 |
+
elif page == "Web Pages":
|
| 305 |
+
web_page_url_page()
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def upload_images_page() -> None:
|
| 309 |
+
"""
|
| 310 |
+
Display the image upload page for geolocation prediction.
|
| 311 |
+
"""
|
| 312 |
+
st.header("Image Upload for Geolocation Prediction")
|
| 313 |
+
uploaded_files = st.file_uploader("Choose images...", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
| 314 |
+
if uploaded_files:
|
| 315 |
+
for idx, file in enumerate(uploaded_files, start=1):
|
| 316 |
+
with st.spinner(f"Processing {file.name}..."):
|
| 317 |
+
image = Image.open(file).convert('RGB')
|
| 318 |
+
st.image(image, caption=f'Uploaded Image: {file.name}', use_column_width=True)
|
| 319 |
+
model = load_geoloc_model()
|
| 320 |
+
if model:
|
| 321 |
+
result = predict_location(image, model)
|
| 322 |
+
if result:
|
| 323 |
+
gps_degrees, location_query, city_geojson, processing_time = result
|
| 324 |
+
st.write(
|
| 325 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
| 326 |
+
if city_geojson:
|
| 327 |
+
display_map(city_geojson, gps_degrees)
|
| 328 |
+
st.write(f"Processing Time (seconds): {processing_time}")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def social_media_page() -> None:
|
| 332 |
+
"""
|
| 333 |
+
Display the social media analysis page.
|
| 334 |
+
"""
|
| 335 |
+
st.header("Social Media Analyser")
|
| 336 |
+
social_media_url = st.text_input("Enter a social media URL to analyse:", key='social_media_url_input')
|
| 337 |
+
if social_media_url:
|
| 338 |
+
media_data = get_media(social_media_url)
|
| 339 |
+
if media_data:
|
| 340 |
+
full_text = media_data[0][1]
|
| 341 |
+
st.subheader("Full Text")
|
| 342 |
+
st.write(full_text)
|
| 343 |
+
most_used_location, most_common_locations = most_frequent_locations(full_text)
|
| 344 |
+
st.subheader("Most Frequent Location")
|
| 345 |
+
st.write(most_used_location)
|
| 346 |
+
|
| 347 |
+
for idx, (media_url, _) in enumerate(media_data, start=1):
|
| 348 |
+
st.subheader(f"Image {idx}")
|
| 349 |
+
response = requests.get(media_url)
|
| 350 |
+
if response.status_code == 200:
|
| 351 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 352 |
+
st.image(image, caption=f'Image from URL: {media_url}', use_column_width=True)
|
| 353 |
+
model = load_geoloc_model()
|
| 354 |
+
if model:
|
| 355 |
+
result = predict_location(image, model)
|
| 356 |
+
if result:
|
| 357 |
+
gps_degrees, location_query, city_geojson, processing_time = result
|
| 358 |
+
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
| 359 |
+
st.write(
|
| 360 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
| 361 |
+
if city_geojson:
|
| 362 |
+
display_map(city_geojson, gps_degrees)
|
| 363 |
+
st.write(f"Processing Time (seconds): {processing_time}")
|
| 364 |
+
if check_location_match(location_query, most_common_locations):
|
| 365 |
+
st.success(
|
| 366 |
+
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
|
| 367 |
+
else:
|
| 368 |
+
st.error(f"Failed to fetch image at URL {media_url}: HTTP {response.status_code}")
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
def web_page_url_page() -> None:
|
| 372 |
+
"""
|
| 373 |
+
Display the web page URL analysis page.
|
| 374 |
+
"""
|
| 375 |
+
st.header("Web Page Analyser")
|
| 376 |
+
web_page_url = st.text_input("Enter a web page URL to scrape:", key='web_page_url_input')
|
| 377 |
+
if web_page_url:
|
| 378 |
+
text, images = scrape_webpage(web_page_url)
|
| 379 |
+
if text:
|
| 380 |
+
st.subheader("Extracted Text First 500 Characters:")
|
| 381 |
+
st.write(text[:500])
|
| 382 |
+
most_used_location, most_common_locations = most_frequent_locations(text)
|
| 383 |
+
st.subheader("Most Frequent Location")
|
| 384 |
+
st.write(most_used_location)
|
| 385 |
+
if images:
|
| 386 |
+
selected_image_url = st.selectbox("Select an image to predict location:", images)
|
| 387 |
+
if selected_image_url:
|
| 388 |
+
response = requests.get(selected_image_url)
|
| 389 |
+
if response.status_code == 200:
|
| 390 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 391 |
+
st.image(image, caption=f'Selected Image from URL: {selected_image_url}', use_column_width=True)
|
| 392 |
+
model = load_geoloc_model()
|
| 393 |
+
if model:
|
| 394 |
+
result = predict_location(image, model)
|
| 395 |
+
if result:
|
| 396 |
+
gps_degrees, location_query, city_geojson, processing_time = result
|
| 397 |
+
location_name = f"{location_query['name']}, {location_query['admin1']}, {location_query['cc']}"
|
| 398 |
+
st.write(
|
| 399 |
+
f"City: {location_query['name']}, Region: {location_query['admin1']}, Country: {location_query['cc']}")
|
| 400 |
+
if city_geojson:
|
| 401 |
+
display_map(city_geojson, gps_degrees)
|
| 402 |
+
st.write(f"Processing Time (seconds): {processing_time}")
|
| 403 |
+
if check_location_match(location_query, most_common_locations):
|
| 404 |
+
st.success(
|
| 405 |
+
f"The predicted location {location_name} matches one of the most frequently mentioned locations!")
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
if __name__ == '__main__':
|
| 409 |
+
main()
|
configs/computer/a100.yaml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
devices: 1
|
| 2 |
+
progress_bar_refresh_rate: 2
|
| 3 |
+
num_workers: 8
|
| 4 |
+
sync_batchnorm: False
|
| 5 |
+
accelerator: gpu
|
| 6 |
+
precision: 32
|
| 7 |
+
strategy: auto
|
| 8 |
+
num_nodes: 1
|
configs/computer/cluster-node-a100.yaml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
devices: 8
|
| 2 |
+
num_workers: 8
|
| 3 |
+
progress_bar_refresh_rate: 2
|
| 4 |
+
sync_batchnorm: True
|
| 5 |
+
accelerator: gpu
|
| 6 |
+
precision: 32
|
| 7 |
+
strategy: ddp
|
| 8 |
+
num_nodes: 1
|
configs/computer/cluster-node-v100.yaml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
devices: 4
|
| 2 |
+
num_workers: 10
|
| 3 |
+
progress_bar_refresh_rate: 2
|
| 4 |
+
sync_batchnorm: True
|
| 5 |
+
accelerator: gpu
|
| 6 |
+
precision: 32
|
| 7 |
+
strategy: ddp
|
| 8 |
+
num_nodes: 1
|
configs/computer/cpu.yaml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
devices: null
|
| 2 |
+
num_workers: 0
|
| 3 |
+
progress_bar_refresh_rate: 2
|
| 4 |
+
sync_batchnorm: False
|
| 5 |
+
accelerator: cpu
|
| 6 |
+
precision: 32
|
| 7 |
+
strategy: auto
|
| 8 |
+
num_nodes: null
|
configs/computer/v100.yaml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
devices: 1
|
| 2 |
+
num_workers: 10
|
| 3 |
+
progress_bar_refresh_rate: 2
|
| 4 |
+
sync_batchnorm: False
|
| 5 |
+
accelerator: gpu
|
| 6 |
+
precision: 32
|
| 7 |
+
strategy: auto
|
| 8 |
+
num_nodes: 1
|
configs/config.yaml
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
defaults:
|
| 2 |
+
- model: default
|
| 3 |
+
- computer: v100
|
| 4 |
+
- dataset: osv5m
|
| 5 |
+
- _self_
|
| 6 |
+
- exp: ???
|
| 7 |
+
|
| 8 |
+
model:
|
| 9 |
+
val_metrics:
|
| 10 |
+
_target_: metrics.distance_based.HaversineMetrics
|
| 11 |
+
acc_radiuses:
|
| 12 |
+
- 1
|
| 13 |
+
- 25
|
| 14 |
+
- 200
|
| 15 |
+
- 750
|
| 16 |
+
- 2500
|
| 17 |
+
acc_area: []
|
| 18 |
+
aux_data: ${aux_data}
|
| 19 |
+
test_metrics:
|
| 20 |
+
_target_: metrics.distance_based.HaversineMetrics
|
| 21 |
+
acc_radiuses:
|
| 22 |
+
- 1
|
| 23 |
+
- 25
|
| 24 |
+
- 200
|
| 25 |
+
- 750
|
| 26 |
+
- 2500
|
| 27 |
+
acc_area: ${areas}
|
| 28 |
+
aux_data: ${aux_data}
|
| 29 |
+
|
| 30 |
+
datamodule:
|
| 31 |
+
_target_: data.datamodule.ImageDataModule
|
| 32 |
+
train_dataset: ${dataset.train_dataset}
|
| 33 |
+
val_dataset: ${dataset.val_dataset}
|
| 34 |
+
test_dataset: ${dataset.test_dataset}
|
| 35 |
+
global_batch_size: ${dataset.global_batch_size}
|
| 36 |
+
num_workers: ${computer.num_workers}
|
| 37 |
+
num_nodes: ${computer.num_nodes}
|
| 38 |
+
num_devices: ${computer.devices}
|
| 39 |
+
val_proportion: 0.1
|
| 40 |
+
|
| 41 |
+
trainer:
|
| 42 |
+
_target_: pytorch_lightning.Trainer
|
| 43 |
+
devices: ${computer.devices}
|
| 44 |
+
accelerator: ${computer.accelerator}
|
| 45 |
+
strategy: ${computer.strategy}
|
| 46 |
+
num_nodes: ${computer.num_nodes}
|
| 47 |
+
precision: ${computer.precision}
|
| 48 |
+
max_epochs: ${max_epochs}
|
| 49 |
+
|
| 50 |
+
logger:
|
| 51 |
+
_target_: pytorch_lightning.loggers.WandbLogger
|
| 52 |
+
save_dir: ${root_dir}
|
| 53 |
+
name: ${experiment_name}
|
| 54 |
+
project: plonk
|
| 55 |
+
log_model: False
|
| 56 |
+
offline: False
|
| 57 |
+
entity: imaginelab
|
| 58 |
+
|
| 59 |
+
checkpoints:
|
| 60 |
+
_target_: pytorch_lightning.callbacks.ModelCheckpoint
|
| 61 |
+
dirpath: ${root_dir}/checkpoints/${experiment_name}
|
| 62 |
+
filename: 'epoch_{epoch}'
|
| 63 |
+
monitor: val/loss
|
| 64 |
+
save_last: True
|
| 65 |
+
save_top_k: 0
|
| 66 |
+
every_n_epochs: 1
|
| 67 |
+
|
| 68 |
+
progress_bar:
|
| 69 |
+
_target_: pytorch_lightning.callbacks.TQDMProgressBar
|
| 70 |
+
refresh_rate: ${computer.progress_bar_refresh_rate}
|
| 71 |
+
|
| 72 |
+
aux_data: []
|
| 73 |
+
max_epochs: 100
|
| 74 |
+
data_dir: ${root_dir}/datasets
|
| 75 |
+
root_dir: ${hydra:runtime.cwd}
|
| 76 |
+
experiment_name: ${dataset.name}__${model.name}
|
| 77 |
+
mode: train # change that to eval to do the testing
|
| 78 |
+
num_classes: 0
|
| 79 |
+
areas: ['country', 'region', 'sub-region', 'city']
|
| 80 |
+
class_name: null
|
| 81 |
+
streetclip: False
|
| 82 |
+
blur: False
|
| 83 |
+
text_tuning: False
|
| 84 |
+
|
| 85 |
+
hydra:
|
| 86 |
+
run:
|
| 87 |
+
dir: outputs/${hydra.job.name}/${now:%Y-%m-%d_%H-%M-%S}/${experiment_name}
|
| 88 |
+
job:
|
| 89 |
+
chdir: true
|
configs/dataset/baselines/im2gps.yaml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset:
|
| 2 |
+
name: im2gps
|
| 3 |
+
global_batch_size: 512
|
| 4 |
+
test_dataset:
|
| 5 |
+
_partial_: true
|
| 6 |
+
_target_: data.data.Baseline
|
| 7 |
+
path: ${data_dir}/baselines/im2gps
|
| 8 |
+
which: 'im2gps'
|
| 9 |
+
transforms: ${dataset.test_transform}
|
| 10 |
+
datamodule:
|
| 11 |
+
_target_: data.datamodule.BaselineDataModule
|
| 12 |
+
test_dataset: ${dataset.test_dataset}
|
| 13 |
+
global_batch_size: ${dataset.global_batch_size}
|
| 14 |
+
num_workers: ${computer.num_workers}
|
| 15 |
+
num_nodes: ${computer.num_nodes}
|
| 16 |
+
num_devices: ${computer.devices}
|
configs/dataset/baselines/im2gps3k.yaml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset:
|
| 2 |
+
name: im2gps3k
|
| 3 |
+
global_batch_size: 512
|
| 4 |
+
test_dataset:
|
| 5 |
+
_partial_: true
|
| 6 |
+
_target_: data.data.Baseline
|
| 7 |
+
path: ${data_dir}/baselines/im2gps3k
|
| 8 |
+
which: 'im2gps3k'
|
| 9 |
+
transforms: ${dataset.test_transform}
|
| 10 |
+
datamodule:
|
| 11 |
+
_target_: data.datamodule.BaselineDataModule
|
| 12 |
+
test_dataset: ${dataset.test_dataset}
|
| 13 |
+
global_batch_size: ${dataset.global_batch_size}
|
| 14 |
+
num_workers: ${computer.num_workers}
|
| 15 |
+
num_nodes: ${computer.num_nodes}
|
| 16 |
+
num_devices: ${computer.devices}
|
configs/dataset/baselines/yfcc4k.yaml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
dataset:
|
| 2 |
+
name: yfcc4k
|
| 3 |
+
global_batch_size: 512
|
| 4 |
+
test_dataset:
|
| 5 |
+
_partial_: true
|
| 6 |
+
_target_: data.data.Baseline
|
| 7 |
+
path: ${data_dir}/baselines/yfcc4k
|
| 8 |
+
which: 'yfcc4k'
|
| 9 |
+
transforms: ${dataset.test_transform}
|
| 10 |
+
datamodule:
|
| 11 |
+
_target_: data.datamodule.BaselineDataModule
|
| 12 |
+
test_dataset: ${dataset.test_dataset}
|
| 13 |
+
global_batch_size: ${dataset.global_batch_size}
|
| 14 |
+
num_workers: ${computer.num_workers}
|
| 15 |
+
num_nodes: ${computer.num_nodes}
|
| 16 |
+
num_devices: ${computer.devices}
|
configs/dataset/osv5m.yaml
ADDED
|
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
defaults:
|
| 2 |
+
- train_transform: fast_clip
|
| 3 |
+
- test_transform: fast_clip
|
| 4 |
+
- _self_
|
| 5 |
+
|
| 6 |
+
name: osv5m
|
| 7 |
+
global_batch_size: 256
|
| 8 |
+
|
| 9 |
+
train_dataset:
|
| 10 |
+
_partial_: true
|
| 11 |
+
_target_: data.data.osv5m
|
| 12 |
+
path: ${data_dir}/osv5m/
|
| 13 |
+
split: train
|
| 14 |
+
class_name: ${class_name}
|
| 15 |
+
transforms: ${dataset.train_transform}
|
| 16 |
+
aux_data: ${aux_data}
|
| 17 |
+
is_baseline: ${is_baseline}
|
| 18 |
+
areas: ${areas}
|
| 19 |
+
streetclip: ${streetclip}
|
| 20 |
+
blur: ${blur}
|
| 21 |
+
|
| 22 |
+
val_dataset:
|
| 23 |
+
_partial_: true
|
| 24 |
+
_target_: data.data.osv5m
|
| 25 |
+
path: ${data_dir}/osv5m/
|
| 26 |
+
split: val
|
| 27 |
+
class_name: ${class_name}
|
| 28 |
+
transforms: ${dataset.test_transform}
|
| 29 |
+
aux_data: ${aux_data}
|
| 30 |
+
is_baseline: ${is_baseline}
|
| 31 |
+
areas: ${areas}
|
| 32 |
+
streetclip: ${streetclip}
|
| 33 |
+
blur: ${blur}
|
| 34 |
+
|
| 35 |
+
test_dataset:
|
| 36 |
+
_partial_: true
|
| 37 |
+
_target_: data.data.osv5m
|
| 38 |
+
path: ${data_dir}/osv5m/
|
| 39 |
+
split: test
|
| 40 |
+
class_name: ${class_name}
|
| 41 |
+
transforms: ${dataset.test_transform}
|
| 42 |
+
aux_data: ${aux_data}
|
| 43 |
+
is_baseline: ${is_baseline}
|
| 44 |
+
areas: ${areas}
|
| 45 |
+
streetclip: ${streetclip}
|
| 46 |
+
blur: ${blur}
|
configs/dataset/osv5m_contrastive.yaml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
defaults:
|
| 2 |
+
- train_transform: fast_clip
|
| 3 |
+
- test_transform: fast_clip
|
| 4 |
+
- _self_
|
| 5 |
+
|
| 6 |
+
name: osv5m
|
| 7 |
+
global_batch_size: 256
|
| 8 |
+
|
| 9 |
+
train_dataset:
|
| 10 |
+
_partial_: true
|
| 11 |
+
_target_: data.data.Contrastiveosv5m
|
| 12 |
+
path: ${data_dir}/osv5m/
|
| 13 |
+
split: train
|
| 14 |
+
class_name: ${class_name}
|
| 15 |
+
transforms: ${dataset.train_transform}
|
| 16 |
+
blur: ${blur}
|
| 17 |
+
|
| 18 |
+
val_dataset:
|
| 19 |
+
_partial_: true
|
| 20 |
+
_target_: data.data.Contrastiveosv5m
|
| 21 |
+
path: ${data_dir}/osv5m/
|
| 22 |
+
split: val
|
| 23 |
+
class_name: ${class_name}
|
| 24 |
+
transforms: ${dataset.test_transform}
|
| 25 |
+
blur: ${blur}
|
| 26 |
+
|
| 27 |
+
test_dataset:
|
| 28 |
+
_partial_: true
|
| 29 |
+
_target_: data.data.Contrastiveosv5m
|
| 30 |
+
path: ${data_dir}/osv5m/
|
| 31 |
+
split: test
|
| 32 |
+
class_name: ${class_name}
|
| 33 |
+
transforms: ${dataset.test_transform}
|
| 34 |
+
blur: ${blur}
|
configs/dataset/osv5m_contrastive_best.yaml
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
defaults:
|
| 2 |
+
- train_transform: fast_clip
|
| 3 |
+
- test_transform: fast_clip
|
| 4 |
+
- _self_
|
| 5 |
+
|
| 6 |
+
name: osv5m
|
| 7 |
+
global_batch_size: 256
|
| 8 |
+
|
| 9 |
+
train_dataset:
|
| 10 |
+
_partial_: true
|
| 11 |
+
_target_: data.data.Contrastiveosv5m
|
| 12 |
+
path: ${data_dir}/osv5m/
|
| 13 |
+
split: train
|
| 14 |
+
class_name: ${class_name}
|
| 15 |
+
transforms: ${dataset.train_transform}
|
| 16 |
+
class_name2: 'unique_region'
|
| 17 |
+
blur: ${blur}
|
| 18 |
+
|
| 19 |
+
val_dataset:
|
| 20 |
+
_partial_: true
|
| 21 |
+
_target_: data.data.Contrastiveosv5m
|
| 22 |
+
path: ${data_dir}/osv5m/
|
| 23 |
+
split: val
|
| 24 |
+
class_name: ${class_name}
|
| 25 |
+
transforms: ${dataset.test_transform}
|
| 26 |
+
class_name2: 'unique_region'
|
| 27 |
+
blur: ${blur}
|
| 28 |
+
|
| 29 |
+
test_dataset:
|
| 30 |
+
_partial_: true
|
| 31 |
+
_target_: data.data.Contrastiveosv5m
|
| 32 |
+
path: ${data_dir}/osv5m/
|
| 33 |
+
split: test
|
| 34 |
+
class_name: ${class_name}
|
| 35 |
+
transforms: ${dataset.test_transform}
|
| 36 |
+
class_name2: 'unique_region'
|
| 37 |
+
blur: ${blur}
|
configs/dataset/osv5m_text_contrastive.yaml
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
defaults:
|
| 2 |
+
- train_transform: fast_clip
|
| 3 |
+
- test_transform: fast_clip
|
| 4 |
+
- _self_
|
| 5 |
+
|
| 6 |
+
name: osv5m
|
| 7 |
+
global_batch_size: 256
|
| 8 |
+
|
| 9 |
+
train_dataset:
|
| 10 |
+
_partial_: true
|
| 11 |
+
_target_: data.data.TextContrastiveosv5m
|
| 12 |
+
path: ${data_dir}/osv5m/
|
| 13 |
+
split: train
|
| 14 |
+
class_name: ${class_name}
|
| 15 |
+
transforms: ${dataset.train_transform}
|
| 16 |
+
blur: ${blur}
|
| 17 |
+
|
| 18 |
+
val_dataset:
|
| 19 |
+
_partial_: true
|
| 20 |
+
_target_: data.data.TextContrastiveosv5m
|
| 21 |
+
path: ${data_dir}/osv5m/
|
| 22 |
+
split: val
|
| 23 |
+
class_name: ${class_name}
|
| 24 |
+
transforms: ${dataset.test_transform}
|
| 25 |
+
blur: ${blur}
|
| 26 |
+
|
| 27 |
+
test_dataset:
|
| 28 |
+
_partial_: true
|
| 29 |
+
_target_: data.data.TextContrastiveosv5m
|
| 30 |
+
path: ${data_dir}/osv5m/
|
| 31 |
+
split: test
|
| 32 |
+
class_name: ${class_name}
|
| 33 |
+
transforms: ${dataset.test_transform}
|
| 34 |
+
blur: ${blur}
|
configs/dataset/test_transform/center_crop.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.ToTensor
|
| 4 |
+
- _target_: utils.image_processing.CenterCrop
|
| 5 |
+
ratio: "1:1"
|
| 6 |
+
- _target_: torchvision.transforms.Resize
|
| 7 |
+
size: ${dataset.img_resolution}
|
| 8 |
+
interpolation: 3
|
| 9 |
+
antialias: true
|
| 10 |
+
- _target_: torchvision.transforms.Normalize
|
| 11 |
+
mean: 0.5
|
| 12 |
+
std: 0.5
|
configs/dataset/test_transform/clip.yaml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: data.transforms.ClipTransform
|
| 2 |
+
split: val
|
configs/dataset/test_transform/fast_clip.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.Resize
|
| 4 |
+
size: 224
|
| 5 |
+
interpolation: 3
|
| 6 |
+
antialias: true
|
| 7 |
+
- _target_: torchvision.transforms.CenterCrop
|
| 8 |
+
size: 224
|
| 9 |
+
- _target_: torchvision.transforms.ToTensor
|
| 10 |
+
- _target_: torchvision.transforms.Normalize
|
| 11 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
| 12 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
configs/dataset/test_transform/fast_resnet.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.Resize
|
| 4 |
+
size: 224
|
| 5 |
+
interpolation: 3
|
| 6 |
+
antialias: true
|
| 7 |
+
- _target_: torchvision.transforms.CenterCrop
|
| 8 |
+
size: 224
|
| 9 |
+
- _target_: torchvision.transforms.ToTensor
|
| 10 |
+
- _target_: torchvision.transforms.Normalize
|
| 11 |
+
mean: [0.485 ,0.456 ,0.406]
|
| 12 |
+
std: [0.229, 0.224, 0.225]
|
configs/dataset/test_transform/none.yaml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.ToTensor
|
| 4 |
+
- _target_: torchvision.transforms.Normalize
|
| 5 |
+
mean: 0.5
|
| 6 |
+
std: 0.5
|
configs/dataset/train_transform/augmentation.yaml
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: data.augmentation.ImageAugmentation
|
| 2 |
+
names: "standard_augmentation,geometric_augmentation,clip_transform"
|
| 3 |
+
|
| 4 |
+
# always apply clip_transform at the end
|
| 5 |
+
clip_transform:
|
| 6 |
+
_target_: torchvision.transforms.Compose
|
| 7 |
+
transforms:
|
| 8 |
+
- _target_: torchvision.transforms.Resize
|
| 9 |
+
size: 224
|
| 10 |
+
interpolation: 3
|
| 11 |
+
antialias: true
|
| 12 |
+
- _target_: torchvision.transforms.CenterCrop
|
| 13 |
+
size: 224
|
| 14 |
+
- _target_: torchvision.transforms.ToTensor
|
| 15 |
+
- _target_: torchvision.transforms.Normalize
|
| 16 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
| 17 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
| 18 |
+
|
| 19 |
+
standard_augmentation:
|
| 20 |
+
_target_: data.augmentation.StandardAugmentation
|
| 21 |
+
# by default, we all augmentation methods
|
| 22 |
+
names: "brightness,contrast,sharpness,color,blur,gaussian_noise"
|
| 23 |
+
|
| 24 |
+
# random PIL brigtness
|
| 25 |
+
brightness:
|
| 26 |
+
_target_: data.augmentation.PillowBrightness
|
| 27 |
+
p: 0.2
|
| 28 |
+
factor_interval: [0.5, 1.5]
|
| 29 |
+
|
| 30 |
+
# random PIL contrast
|
| 31 |
+
contrast:
|
| 32 |
+
_target_: data.augmentation.PillowContrast
|
| 33 |
+
p: 0.2
|
| 34 |
+
factor_interval: [0.3, 3]
|
| 35 |
+
|
| 36 |
+
# random PIL sharpness
|
| 37 |
+
sharpness:
|
| 38 |
+
_target_: data.augmentation.PillowSharpness
|
| 39 |
+
p: 0.2
|
| 40 |
+
factor_interval: [0.5, 30.0]
|
| 41 |
+
|
| 42 |
+
# random PIL color
|
| 43 |
+
color:
|
| 44 |
+
_target_: data.augmentation.PillowColor
|
| 45 |
+
p: 0.2
|
| 46 |
+
factor_interval: [0.0, 2.0]
|
| 47 |
+
|
| 48 |
+
# random PIL blur
|
| 49 |
+
blur:
|
| 50 |
+
_target_: data.augmentation.PillowBlur
|
| 51 |
+
p: 0.2
|
| 52 |
+
factor_interval: [1, 2]
|
| 53 |
+
|
| 54 |
+
# random numpy gaussian noise
|
| 55 |
+
gaussian_noise:
|
| 56 |
+
_target_: data.augmentation.NumpyGaussianNoise
|
| 57 |
+
p: 0.2
|
| 58 |
+
factor_interval: [0.1, 0.04]
|
| 59 |
+
|
| 60 |
+
geometric_augmentation:
|
| 61 |
+
_target_: data.augmentation.GeometricAugmentation
|
| 62 |
+
# by default, we all augmentation methods
|
| 63 |
+
names: "random_rotation,random_resized_crop,random_horizontal_flip"
|
| 64 |
+
|
| 65 |
+
# random rotation
|
| 66 |
+
random_rotation:
|
| 67 |
+
_target_: torchvision.transforms.RandomRotation
|
| 68 |
+
degrees: [-15, 15]
|
| 69 |
+
|
| 70 |
+
# random crop
|
| 71 |
+
random_resized_crop:
|
| 72 |
+
_target_: torchvision.transforms.RandomResizedCrop
|
| 73 |
+
scale: [0.5, 1.0]
|
| 74 |
+
ratio: [0.9, 1.1]
|
| 75 |
+
size: 224
|
| 76 |
+
|
| 77 |
+
# random horizontal flip
|
| 78 |
+
random_horizontal_flip:
|
| 79 |
+
_target_: torchvision.transforms.RandomHorizontalFlip
|
| 80 |
+
p: 0.5
|
| 81 |
+
|
| 82 |
+
# random vertical flip
|
| 83 |
+
random_vertical_flip:
|
| 84 |
+
_target_: torchvision.transforms.RandomVerticalFlip
|
| 85 |
+
p: 0.5
|
configs/dataset/train_transform/center_crop.yaml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.ToTensor
|
| 4 |
+
- _target_: utils.image_processing.CenterCrop
|
| 5 |
+
ratio: "1:1"
|
| 6 |
+
- _target_: torchvision.transforms.Resize
|
| 7 |
+
size: ${dataset.img_resolution}
|
| 8 |
+
interpolation: 3
|
| 9 |
+
antialias: true
|
| 10 |
+
- _target_: torchvision.transforms.RandomHorizontalFlip
|
| 11 |
+
p: 0.5
|
| 12 |
+
- _target_: torchvision.transforms.Normalize
|
| 13 |
+
mean: 0.5
|
| 14 |
+
std: 0.5
|
configs/dataset/train_transform/clip.yaml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: data.transforms.ClipTransform
|
| 2 |
+
split: val
|
configs/dataset/train_transform/fast_clip.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.Resize
|
| 4 |
+
size: 224
|
| 5 |
+
interpolation: 3
|
| 6 |
+
antialias: true
|
| 7 |
+
- _target_: torchvision.transforms.CenterCrop
|
| 8 |
+
size: 224
|
| 9 |
+
- _target_: torchvision.transforms.ToTensor
|
| 10 |
+
- _target_: torchvision.transforms.Normalize
|
| 11 |
+
mean: [0.48145466, 0.4578275, 0.40821073]
|
| 12 |
+
std: [0.26862954, 0.26130258, 0.27577711]
|
configs/dataset/train_transform/fast_resnet.yaml
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.Resize
|
| 4 |
+
size: 224
|
| 5 |
+
interpolation: 3
|
| 6 |
+
antialias: true
|
| 7 |
+
- _target_: torchvision.transforms.CenterCrop
|
| 8 |
+
size: 224
|
| 9 |
+
- _target_: torchvision.transforms.ToTensor
|
| 10 |
+
- _target_: torchvision.transforms.Normalize
|
| 11 |
+
mean: [0.485 ,0.456 ,0.406]
|
| 12 |
+
std: [0.229, 0.224, 0.225]
|
configs/dataset/train_transform/none.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
_target_: torchvision.transforms.Compose
|
| 2 |
+
transforms:
|
| 3 |
+
- _target_: torchvision.transforms.Resize
|
| 4 |
+
size: 224
|
| 5 |
+
interpolation: 3
|
| 6 |
+
antialias: true
|
| 7 |
+
- _target_: torchvision.transforms.ToTensor
|
configs/exp/DinoV2.yaml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /model/network/backbone: dinov2_vitl14
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
model:
|
| 9 |
+
optimizer:
|
| 10 |
+
optim:
|
| 11 |
+
lr: 0.0002
|
| 12 |
+
weight_decay: 0.0001
|
| 13 |
+
|
| 14 |
+
is_baseline: false
|
| 15 |
+
max_epochs: 30
|
| 16 |
+
|
| 17 |
+
dataset:
|
| 18 |
+
global_batch_size: 2048
|
configs/exp/ResNet.yaml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /dataset/test_transform: fast_resnet
|
| 6 |
+
- override /dataset/train_transform: fast_resnet
|
| 7 |
+
- override /model.network.mid: mlp_resnet
|
| 8 |
+
- override /model/network/backbone: ResNet50
|
| 9 |
+
- _self_
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
optimizer:
|
| 13 |
+
optim:
|
| 14 |
+
lr: 0.0002
|
| 15 |
+
weight_decay: 0.0001
|
| 16 |
+
|
| 17 |
+
is_baseline: false
|
| 18 |
+
max_epochs: 30
|
| 19 |
+
|
| 20 |
+
dataset:
|
| 21 |
+
global_batch_size: 2048
|
configs/exp/base_model.yaml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
model:
|
| 9 |
+
name: base_model
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 0.0002
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
|
| 15 |
+
is_baseline: false
|
| 16 |
+
max_epochs: 30
|
| 17 |
+
|
| 18 |
+
dataset:
|
| 19 |
+
global_batch_size: 2048
|
configs/exp/best_model.yaml
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_contrastive_best
|
| 5 |
+
- override /model: hybrid
|
| 6 |
+
- override /model/network: best_backbone
|
| 7 |
+
- override /model/network/backbone: clip_L_14_DataComp
|
| 8 |
+
- override /model/network/mid: mlp_hybrid
|
| 9 |
+
- override /model/loss: best_model
|
| 10 |
+
- _self_
|
| 11 |
+
|
| 12 |
+
class_name: 'quadtree_10_1000'
|
| 13 |
+
is_baseline: false
|
| 14 |
+
max_epochs: 30
|
| 15 |
+
|
| 16 |
+
model:
|
| 17 |
+
name: best_model
|
| 18 |
+
optimizer:
|
| 19 |
+
optim:
|
| 20 |
+
lr: 2e-4
|
| 21 |
+
weight_decay: 0.0001
|
| 22 |
+
backbone_lr: 2e-5
|
| 23 |
+
|
| 24 |
+
dataset:
|
| 25 |
+
global_batch_size: 2048
|
configs/exp/classification_area.yaml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
class_name: 'area'
|
| 9 |
+
model:
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 0.0002
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
|
| 15 |
+
is_baseline: false
|
| 16 |
+
max_epochs: 15
|
| 17 |
+
|
| 18 |
+
dataset:
|
| 19 |
+
global_batch_size: 2048
|
configs/exp/classification_cell.yaml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
class_name: quadtree_10_1000
|
| 9 |
+
model:
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 0.0002
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
|
| 15 |
+
is_baseline: false
|
| 16 |
+
max_epochs: 15
|
| 17 |
+
|
| 18 |
+
dataset:
|
| 19 |
+
global_batch_size: 2048
|
configs/exp/classification_cell_hier.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- override /model/loss: cls_hier_quad
|
| 7 |
+
- _self_
|
| 8 |
+
|
| 9 |
+
class_name: quadtree_10_1000
|
| 10 |
+
model:
|
| 11 |
+
optimizer:
|
| 12 |
+
optim:
|
| 13 |
+
lr: 0.0002
|
| 14 |
+
weight_decay: 0.0001
|
| 15 |
+
|
| 16 |
+
is_baseline: false
|
| 17 |
+
max_epochs: 15
|
| 18 |
+
|
| 19 |
+
dataset:
|
| 20 |
+
global_batch_size: 2048
|
configs/exp/classification_city.yaml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
class_name: 'city'
|
| 9 |
+
model:
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 0.0002
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
|
| 15 |
+
is_baseline: false
|
| 16 |
+
max_epochs: 15
|
| 17 |
+
|
| 18 |
+
dataset:
|
| 19 |
+
global_batch_size: 2048
|
configs/exp/classification_city_hier.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- override /model/loss: cls_hier
|
| 7 |
+
- _self_
|
| 8 |
+
|
| 9 |
+
class_name: 'city'
|
| 10 |
+
model:
|
| 11 |
+
optimizer:
|
| 12 |
+
optim:
|
| 13 |
+
lr: 0.0002
|
| 14 |
+
weight_decay: 0.0001
|
| 15 |
+
|
| 16 |
+
is_baseline: false
|
| 17 |
+
max_epochs: 15
|
| 18 |
+
|
| 19 |
+
dataset:
|
| 20 |
+
global_batch_size: 2048
|
configs/exp/classification_country.yaml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
class_name: 'country'
|
| 9 |
+
model:
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 0.0002
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
|
| 15 |
+
is_baseline: false
|
| 16 |
+
max_epochs: 15
|
| 17 |
+
|
| 18 |
+
dataset:
|
| 19 |
+
global_batch_size: 2048
|
configs/exp/classification_region copy.yaml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
class_name: 'region'
|
| 9 |
+
model:
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 0.0002
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
|
| 15 |
+
is_baseline: false
|
| 16 |
+
max_epochs: 15
|
| 17 |
+
|
| 18 |
+
dataset:
|
| 19 |
+
global_batch_size: 2048
|
configs/exp/classification_region.yaml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: classification
|
| 5 |
+
- override /model/network/backbone: openclip_B_32
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
class_name: 'region'
|
| 9 |
+
model:
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 0.0002
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
|
| 15 |
+
is_baseline: false
|
| 16 |
+
max_epochs: 15
|
| 17 |
+
|
| 18 |
+
dataset:
|
| 19 |
+
global_batch_size: 2048
|
configs/exp/clip_L_14_DataComp.yaml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /model/network/backbone: clip_L_14_DataComp
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
model:
|
| 9 |
+
optimizer:
|
| 10 |
+
optim:
|
| 11 |
+
lr: 0.0002
|
| 12 |
+
weight_decay: 0.0001
|
| 13 |
+
|
| 14 |
+
is_baseline: false
|
| 15 |
+
max_epochs: 30
|
| 16 |
+
|
| 17 |
+
dataset:
|
| 18 |
+
global_batch_size: 2048
|
configs/exp/clip_L_14_Laion.yaml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /model/network/backbone: openclip_L_14
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
model:
|
| 9 |
+
optimizer:
|
| 10 |
+
optim:
|
| 11 |
+
lr: 0.0002
|
| 12 |
+
weight_decay: 0.0001
|
| 13 |
+
|
| 14 |
+
is_baseline: false
|
| 15 |
+
max_epochs: 30
|
| 16 |
+
|
| 17 |
+
dataset:
|
| 18 |
+
global_batch_size: 2048
|
configs/exp/clip_L_14_OpenAI.yaml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /model/network/backbone: clip_L_14
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
model:
|
| 9 |
+
optimizer:
|
| 10 |
+
optim:
|
| 11 |
+
lr: 0.0002
|
| 12 |
+
weight_decay: 0.0001
|
| 13 |
+
|
| 14 |
+
is_baseline: false
|
| 15 |
+
max_epochs: 30
|
| 16 |
+
|
| 17 |
+
dataset:
|
| 18 |
+
global_batch_size: 2048
|
configs/exp/clip_bigG_14_Laion.yaml
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /model/network/backbone: openclip_bigG_14
|
| 6 |
+
- _self_
|
| 7 |
+
|
| 8 |
+
model:
|
| 9 |
+
optimizer:
|
| 10 |
+
optim:
|
| 11 |
+
lr: 0.0002
|
| 12 |
+
weight_decay: 0.0001
|
| 13 |
+
|
| 14 |
+
is_baseline: false
|
| 15 |
+
max_epochs: 30
|
| 16 |
+
|
| 17 |
+
dataset:
|
| 18 |
+
global_batch_size: 2048
|
configs/exp/contrastive_area.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_contrastive
|
| 5 |
+
- override /model: regression
|
| 6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
| 7 |
+
- override /model/network/backbone: openclip_B_32
|
| 8 |
+
- override /model/loss: contrastive
|
| 9 |
+
- _self_
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
optimizer:
|
| 13 |
+
optim:
|
| 14 |
+
lr: 2e-4
|
| 15 |
+
weight_decay: 0.0001
|
| 16 |
+
backbone_lr: 2e-5
|
| 17 |
+
|
| 18 |
+
class_name: area
|
| 19 |
+
is_baseline: false
|
| 20 |
+
max_epochs: 30
|
configs/exp/contrastive_cell.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_contrastive
|
| 5 |
+
- override /model: regression
|
| 6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
| 7 |
+
- override /model/network/backbone: openclip_B_32
|
| 8 |
+
- override /model/loss: contrastive
|
| 9 |
+
- _self_
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
optimizer:
|
| 13 |
+
optim:
|
| 14 |
+
lr: 2e-4
|
| 15 |
+
weight_decay: 0.0001
|
| 16 |
+
backbone_lr: 2e-5
|
| 17 |
+
|
| 18 |
+
class_name: quadtree_10_1000
|
| 19 |
+
is_baseline: false
|
| 20 |
+
max_epochs: 30
|
configs/exp/contrastive_city.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_contrastive
|
| 5 |
+
- override /model: regression
|
| 6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
| 7 |
+
- override /model/network/backbone: openclip_B_32
|
| 8 |
+
- override /model/loss: contrastive
|
| 9 |
+
- _self_
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
optimizer:
|
| 13 |
+
optim:
|
| 14 |
+
lr: 2e-4
|
| 15 |
+
weight_decay: 0.0001
|
| 16 |
+
backbone_lr: 2e-5
|
| 17 |
+
|
| 18 |
+
class_name: city
|
| 19 |
+
is_baseline: false
|
| 20 |
+
max_epochs: 30
|
configs/exp/contrastive_country.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_contrastive
|
| 5 |
+
- override /model: regression
|
| 6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
| 7 |
+
- override /model/network/backbone: openclip_B_32
|
| 8 |
+
- override /model/loss: contrastive
|
| 9 |
+
- _self_
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
optimizer:
|
| 13 |
+
optim:
|
| 14 |
+
lr: 2e-4
|
| 15 |
+
weight_decay: 0.0001
|
| 16 |
+
backbone_lr: 2e-5
|
| 17 |
+
|
| 18 |
+
class_name: country
|
| 19 |
+
is_baseline: false
|
| 20 |
+
max_epochs: 30
|
configs/exp/contrastive_region.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_contrastive
|
| 5 |
+
- override /model: regression
|
| 6 |
+
- override /model/network: contrastive_unfrozen_backbone
|
| 7 |
+
- override /model/network/backbone: openclip_B_32
|
| 8 |
+
- override /model/loss: contrastive
|
| 9 |
+
- _self_
|
| 10 |
+
|
| 11 |
+
model:
|
| 12 |
+
optimizer:
|
| 13 |
+
optim:
|
| 14 |
+
lr: 2e-4
|
| 15 |
+
weight_decay: 0.0001
|
| 16 |
+
backbone_lr: 2e-5
|
| 17 |
+
|
| 18 |
+
class_name: region
|
| 19 |
+
is_baseline: false
|
| 20 |
+
max_epochs: 30
|
configs/exp/contrastive_text.yaml
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_text_contrastive
|
| 5 |
+
- override /model: text_tuning
|
| 6 |
+
- override /model/network/backbone: openclip_B_32
|
| 7 |
+
- _self_
|
| 8 |
+
|
| 9 |
+
model:
|
| 10 |
+
network:
|
| 11 |
+
backbone:
|
| 12 |
+
instance:
|
| 13 |
+
_target_: models.networks.backbones.CLIPText
|
| 14 |
+
optimizer:
|
| 15 |
+
optim:
|
| 16 |
+
lr: 0.0002
|
| 17 |
+
weight_decay: 0.0001
|
| 18 |
+
|
| 19 |
+
is_baseline: false
|
| 20 |
+
class_name: city
|
| 21 |
+
text_tuning: True
|
| 22 |
+
max_epochs: 30
|
configs/exp/eval_best_model.yaml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /dataset: osv5m_contrastive_best
|
| 5 |
+
- override /model: hybrid
|
| 6 |
+
- override /model/network: best_backbone
|
| 7 |
+
- override /model/network/backbone: clip_L_14_DataComp
|
| 8 |
+
- override /model/network/mid: mlp_hybrid
|
| 9 |
+
- _self_
|
| 10 |
+
|
| 11 |
+
class_name: 'quadtree_10_1000'
|
| 12 |
+
is_baseline: false
|
| 13 |
+
max_epochs: 30
|
| 14 |
+
mode: 'eval'
|
| 15 |
+
|
| 16 |
+
model:
|
| 17 |
+
name: best_model
|
| 18 |
+
optimizer:
|
| 19 |
+
optim:
|
| 20 |
+
lr: 2e-4
|
| 21 |
+
weight_decay: 0.0001
|
| 22 |
+
backbone_lr: 2e-5
|
| 23 |
+
network:
|
| 24 |
+
head:
|
| 25 |
+
instance:
|
| 26 |
+
quadtree_path: ${root_dir}/quadtree_10_1000.csv
|
| 27 |
+
|
| 28 |
+
dataset:
|
| 29 |
+
global_batch_size: 2048
|
configs/exp/fine_tuning.yaml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# @package _global_
|
| 2 |
+
|
| 3 |
+
defaults:
|
| 4 |
+
- override /model: regression
|
| 5 |
+
- override /model/network: unfrozen_backbone
|
| 6 |
+
- override /model/network/backbone: openclip_B_32
|
| 7 |
+
- _self_
|
| 8 |
+
|
| 9 |
+
model:
|
| 10 |
+
optimizer:
|
| 11 |
+
optim:
|
| 12 |
+
lr: 2e-4
|
| 13 |
+
weight_decay: 0.0001
|
| 14 |
+
backbone_lr: 2e-5
|
| 15 |
+
|
| 16 |
+
is_baseline: false
|
| 17 |
+
max_epochs: 30
|
| 18 |
+
|
| 19 |
+
dataset:
|
| 20 |
+
global_batch_size: 2048
|