Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,94 +1,150 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import csv
|
|
|
|
| 3 |
import logging
|
| 4 |
import gradio as gr
|
| 5 |
-
import nltk
|
| 6 |
-
from datasets import Dataset, DatasetDict, DatasetInfo, Features, Value, ClassLabel
|
| 7 |
-
from huggingface_hub import HfApi, Repository, create_repo
|
| 8 |
from tqdm import tqdm
|
|
|
|
| 9 |
from nltk.tokenize import word_tokenize
|
| 10 |
-
from nltk.corpus import wordnet
|
| 11 |
-
import
|
| 12 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
nltk.download('all')
|
| 16 |
-
#nltk.download('wordnet')
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
#
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
word_length = random.randint(3, 10)
|
| 27 |
-
word = ''.join(random.choices(string.ascii_lowercase, k=word_length))
|
| 28 |
-
words.append(word)
|
| 29 |
-
return words
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
for word in words:
|
| 35 |
-
synsets = wn.synsets(word)
|
| 36 |
-
if synsets:
|
| 37 |
-
meanings[word] = synsets[0].definition()
|
| 38 |
-
else:
|
| 39 |
-
meanings[word] = "No definition found."
|
| 40 |
-
return meanings
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
writer = csv.DictWriter(file, fieldnames=fieldnames)
|
| 47 |
-
writer.writeheader()
|
| 48 |
-
for word, meaning in data.items():
|
| 49 |
-
writer.writerow({'word': word, 'meaning': meaning})
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
-
def
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
def
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
# Gradio
|
| 81 |
-
with gr.Blocks() as demo:
|
|
|
|
|
|
|
| 82 |
with gr.Tabs():
|
| 83 |
-
with gr.
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
#
|
| 93 |
-
|
| 94 |
-
demo.launch()
|
|
|
|
| 1 |
+
|
| 2 |
import os
|
| 3 |
import csv
|
| 4 |
+
import json
|
| 5 |
import logging
|
| 6 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 7 |
from tqdm import tqdm
|
| 8 |
+
import nltk
|
| 9 |
from nltk.tokenize import word_tokenize
|
| 10 |
+
from nltk.corpus import wordnet
|
| 11 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 12 |
+
from huggingface_hub import HfApi, Repository, login
|
| 13 |
+
from datasets import Dataset
|
| 14 |
+
import pandas as pd
|
| 15 |
+
from datetime import datetime
|
| 16 |
+
import secrets
|
| 17 |
|
| 18 |
+
# Download all NLTK data
|
| 19 |
nltk.download('all')
|
|
|
|
| 20 |
|
| 21 |
+
# Setup logging
|
| 22 |
+
log_dir = "logs"
|
| 23 |
+
os.makedirs(log_dir, exist_ok=True)
|
| 24 |
+
logging.basicConfig(
|
| 25 |
+
filename=os.path.join(log_dir, f"app_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log"),
|
| 26 |
+
level=logging.INFO,
|
| 27 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Error logging to Hugging Face
|
| 31 |
+
error_dir = "errors"
|
| 32 |
+
os.makedirs(error_dir, exist_ok=True)
|
| 33 |
+
error_log_file = os.path.join(error_dir, f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log")
|
| 34 |
+
|
| 35 |
+
def log_error(error_msg):
|
| 36 |
+
with open(error_log_file, 'a') as f:
|
| 37 |
+
f.write(f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')} - ERROR - {error_msg}\n")
|
| 38 |
+
try:
|
| 39 |
+
api = HfApi()
|
| 40 |
+
api.upload_file(
|
| 41 |
+
path_or_fileobj=error_log_file,
|
| 42 |
+
path_in_repo=f"errors_{datetime.now().strftime('%Y%m%d_%H%M%S')}.log",
|
| 43 |
+
repo_id="katsukiai/errors",
|
| 44 |
+
repo_type="dataset"
|
| 45 |
+
)
|
| 46 |
+
except Exception as e:
|
| 47 |
+
logging.error(f"Failed to upload error log: {str(e)}")
|
| 48 |
|
| 49 |
+
# Load Hugging Face models (300+ models available, using DeepSeek for long text)
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
|
| 51 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct")
|
| 52 |
+
meaning_generator = pipeline("text2text-generation", model="google/flan-t5-large")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
+
# Hugging Face login
|
| 55 |
+
HF_TOKEN = os.getenv("HF_TOKEN", secrets.token_hex(16))
|
| 56 |
+
login(token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# Dataset preparation
|
| 59 |
+
dataset_dir = "dataset"
|
| 60 |
+
os.makedirs(dataset_dir, exist_ok=True)
|
| 61 |
+
csv_file = os.path.join(dataset_dir, "deepfocus_data.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
def process_text_to_csv(input_text):
|
| 64 |
+
try:
|
| 65 |
+
tokens = word_tokenize(input_text.lower())
|
| 66 |
+
words = list(set(tokens))
|
| 67 |
+
data = []
|
| 68 |
+
for word in tqdm(words, desc="Processing words"):
|
| 69 |
+
meanings = []
|
| 70 |
+
synsets = wordnet.synsets(word)
|
| 71 |
+
if synsets:
|
| 72 |
+
meanings = [syn.definition() for syn in synsets[:3]]
|
| 73 |
+
else:
|
| 74 |
+
try:
|
| 75 |
+
generated_meaning = meaning_generator(f"Define the word '{word}'", max_length=100)[0]['generated_text']
|
| 76 |
+
meanings.append(generated_meaning)
|
| 77 |
+
except Exception as e:
|
| 78 |
+
log_error(f"Meaning generation failed for '{word}': {str(e)}")
|
| 79 |
+
data.append({"tokenizer": tokens, "words": word, "meaning": meanings})
|
| 80 |
+
|
| 81 |
+
# Save to CSV
|
| 82 |
+
with open(csv_file, 'w', newline='', encoding='utf-8') as f:
|
| 83 |
+
writer = csv.DictWriter(f, fieldnames=["tokenizer", "words", "meaning"])
|
| 84 |
+
writer.writeheader()
|
| 85 |
+
writer.writerows(data)
|
| 86 |
+
|
| 87 |
+
logging.info(f"Dataset saved to {csv_file}")
|
| 88 |
+
return data
|
| 89 |
+
except Exception as e:
|
| 90 |
+
log_error(f"Error in process_text_to_csv: {str(e)}")
|
| 91 |
+
raise
|
| 92 |
|
| 93 |
+
def upload_to_huggingface():
|
| 94 |
+
try:
|
| 95 |
+
dataset = Dataset.from_csv(csv_file)
|
| 96 |
+
dataset.push_to_hub("katsukiai/DeepFocus-X3", token=HF_TOKEN)
|
| 97 |
+
logging.info("Dataset uploaded to Hugging Face")
|
| 98 |
+
except Exception as e:
|
| 99 |
+
log_error(f"Error uploading to Hugging Face: {str(e)}")
|
| 100 |
+
raise
|
| 101 |
|
| 102 |
+
def generate_output(input_text):
|
| 103 |
+
try:
|
| 104 |
+
data = process_text_to_csv(input_text)
|
| 105 |
+
upload_to_huggingface()
|
| 106 |
+
return json.dumps(data, indent=2)
|
| 107 |
+
except Exception as e:
|
| 108 |
+
log_error(f"Error in generate_output: {str(e)}")
|
| 109 |
+
return f"Error: {str(e)}"
|
| 110 |
|
| 111 |
+
def view_logs():
|
| 112 |
+
try:
|
| 113 |
+
log_files = os.listdir(log_dir)
|
| 114 |
+
log_content = ""
|
| 115 |
+
for log_file in log_files:
|
| 116 |
+
with open(os.path.join(log_dir, log_file), 'r') as f:
|
| 117 |
+
log_content += f"\n\n--- {log_file} ---\n\n{f.read()}"
|
| 118 |
+
return log_content
|
| 119 |
+
except Exception as e:
|
| 120 |
+
log_error(f"Error in view_logs: {str(e)}")
|
| 121 |
+
return f"Error: {str(e)}"
|
| 122 |
|
| 123 |
+
# Gradio Interface
|
| 124 |
+
with gr.Blocks(title="DeepFocus-X3") as demo:
|
| 125 |
+
gr.Markdown("# DeepFocus-X3")
|
| 126 |
+
|
| 127 |
with gr.Tabs():
|
| 128 |
+
with gr.TabItem("About"):
|
| 129 |
+
gr.Markdown("""
|
| 130 |
+
## About DeepFocus-X3
|
| 131 |
+
This application processes text, tokenizes it, extracts unique words, generates meanings, and uploads the dataset to Hugging Face.
|
| 132 |
+
- Uses NLTK for tokenization and WordNet for meanings.
|
| 133 |
+
- Leverages DeepSeek AI for long text processing and Google FLAN-T5 for meaning generation.
|
| 134 |
+
- Logs all activities and errors, with error logs uploaded to Hugging Face.
|
| 135 |
+
""")
|
| 136 |
+
|
| 137 |
+
with gr.TabItem("Generate all"):
|
| 138 |
+
input_text = gr.Textbox(label="Input Text", lines=10)
|
| 139 |
+
output_json = gr.Textbox(label="Output JSON", lines=10)
|
| 140 |
+
generate_btn = gr.Button("Generate and Upload")
|
| 141 |
+
generate_btn.click(fn=generate_output, inputs=input_text, outputs=output_json)
|
| 142 |
+
|
| 143 |
+
with gr.TabItem("Logs"):
|
| 144 |
+
gr.Markdown("## Report using Logs")
|
| 145 |
+
log_output = gr.Textbox(label="Log Content", lines=20)
|
| 146 |
+
view_logs_btn = gr.Button("View Logs")
|
| 147 |
+
view_logs_btn.click(fn=view_logs, inputs=None, outputs=log_output)
|
| 148 |
|
| 149 |
+
# Launch Gradio app
|
| 150 |
+
demo.launch()
|
|
|