File size: 20,803 Bytes
4cf6275
366f5cf
 
 
 
 
 
0e3cf7e
 
4cf6275
1ba33db
4cf6275
366f5cf
 
 
4cf6275
 
 
df98899
366f5cf
 
df98899
366f5cf
4cf6275
366f5cf
 
 
 
0e3cf7e
 
 
 
 
 
 
 
366f5cf
 
 
0e3cf7e
 
 
 
 
4cf6275
0e3cf7e
 
 
366f5cf
0e3cf7e
366f5cf
0e3cf7e
4cf6275
0e3cf7e
 
 
366f5cf
0e3cf7e
366f5cf
 
4cf6275
366f5cf
 
 
4cf6275
edcd131
 
 
4cf6275
366f5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
0e3cf7e
366f5cf
 
 
 
 
 
 
 
0e3cf7e
 
 
366f5cf
 
 
 
 
0e3cf7e
 
366f5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285ffca
366f5cf
 
285ffca
 
 
 
 
366f5cf
285ffca
366f5cf
285ffca
 
366f5cf
 
285ffca
366f5cf
 
285ffca
 
 
 
 
 
366f5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19179a4
 
 
 
 
 
 
366f5cf
 
 
19179a4
 
 
366f5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34cda5b
4cf6275
366f5cf
0e3cf7e
366f5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e3cf7e
366f5cf
 
 
0e3cf7e
366f5cf
 
 
0e3cf7e
366f5cf
 
 
 
 
 
 
0e3cf7e
366f5cf
 
0e3cf7e
366f5cf
 
 
 
 
0e3cf7e
366f5cf
 
593cfee
366f5cf
593cfee
366f5cf
 
b745556
366f5cf
 
 
 
 
b745556
366f5cf
b745556
366f5cf
b745556
366f5cf
 
 
 
 
bacba1e
366f5cf
 
 
 
 
 
bacba1e
366f5cf
 
 
 
 
 
 
 
bacba1e
366f5cf
 
 
bacba1e
366f5cf
 
 
 
 
 
 
 
593cfee
366f5cf
b745556
366f5cf
 
b745556
366f5cf
 
bacba1e
366f5cf
 
b745556
bacba1e
0e3cf7e
366f5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e3cf7e
366f5cf
 
0e3cf7e
366f5cf
 
 
 
 
0e3cf7e
366f5cf
 
 
 
 
 
 
 
0e3cf7e
366f5cf
 
 
 
 
 
 
 
0e3cf7e
366f5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e3cf7e
366f5cf
 
 
 
 
0e3cf7e
366f5cf
0e3cf7e
366f5cf
 
 
 
 
0e3cf7e
366f5cf
 
 
 
 
 
0e3cf7e
366f5cf
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
import os
import pickle
import faiss
import json
import numpy as np
import pandas as pd
import requests
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer

# ------------------
# Environment Setup
# ------------------
os.environ["HF_HOME"] = "/app/hf_cache"
os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"

GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
GOOGLE_API_KEY = os.getenv("GOOGLE_SEARCH_API_KEY")
GOOGLE_CX = os.getenv("GOOGLE_SEARCH_CX")

GEMINI_URL = f"https://generativelanguage.googleapis.com/v1beta/models/gemma-3n-e4b-it:generateContent?key={GEMINI_API_KEY}" if GEMINI_API_KEY else None

# ------------------
# FastAPI App Config
# ------------------
app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# ------------------
# Load Components
# ------------------
try:
    model = SentenceTransformer("/app/model")
except Exception as e:
    print(f"Error loading model: {e}")
    model = None

try:
    with open("thirukkural_data.pkl", "rb") as f:
        kural_data = pickle.load(f)
    print(f"✅ Kural data loaded: {kural_data.shape}")
except Exception as e:
    print(f"❌ Error loading data: {e}")
    kural_data = None

try:
    english_index = faiss.read_index("thirukkural_english_index.faiss")
    tamil_index = faiss.read_index("thirukkural_tamil_index.faiss")
    print("✅ FAISS indexes loaded")
except Exception as e:
    print(f"❌ Error loading FAISS indexes: {e}")
    english_index = tamil_index = None

# ------------------
# Request Schema
# ------------------
class QueryRequest(BaseModel):
    query: str
    lang: str  # "en" or "ta"
    top_k: int = 3

# ------------------
# Intent Classifier
# ------------------
def classify_intent(query: str) -> str:
    query = query.lower()
    if any(word in query for word in ["hello", "hi", "vanakkam", "hey"]):
        return "greeting"
    if any(word in query for word in ["thanks", "thank you", "nandri"]):
        return "thanks"
    if any(word in query for word in ["sad", "happy", "life", "love", "philosophy", "purpose", "feel", "emotion"]):
        return "life_advice"
    if any(word in query for word in ["what", "why", "how", "when", "where", "who", "search", "find"]):
        return "web_search"
    return "fallback"

# ------------------
# Utility Functions
# ------------------
def safe_get_value(row, keys, default=""):
    for k in keys:
        if k in row:
            return row[k]
    return default

def format_kural_for_response(kural_dict):
    return {
        "Number": safe_get_value(kural_dict, ["ID", "Index"], "Unknown"),
        "Tamil": safe_get_value(kural_dict, ["Kural", "combined_text_tamil"]),
        "English": safe_get_value(kural_dict, ["Couplet", "combined_text_english"]),
        "Category": safe_get_value(kural_dict, ["Adhigaram", "Section", "Adhigaram_ID"], "General"),
        "Explanation": safe_get_value(kural_dict, ["Vilakam", "Kalaingar_Urai", "Solomon_Pappaiya"], "")
    }

def format_kural_for_prompt(kural_dict):
    return f"#{safe_get_value(kural_dict, ['ID', 'Index'])}\nTamil: {safe_get_value(kural_dict, ['Kural'])}\nEnglish: {safe_get_value(kural_dict, ['Couplet'])}"

# ------------------
# Web Search Agent
# ------------------
def web_search_agent(query: str, lang: str = "en") -> dict:
    if not GOOGLE_API_KEY or not GOOGLE_CX:
        return {"query": query, "results": [], "explanation": "Google Search API credentials are missing."}

    try:
        params = {
            "key": GOOGLE_API_KEY,
            "cx": GOOGLE_CX,
            "q": query,
            "hl": lang,
            "num": 5
        }
        response = requests.get("https://www.googleapis.com/customsearch/v1", params=params, timeout=10)
        response.raise_for_status()
        data = response.json()
        results = [{"title": i.get("title"), "snippet": i.get("snippet"), "link": i.get("link")} for i in data.get("items", [])]
        return {"query": query, "results": results, "explanation": f"Here are relevant results for: '{query}'"}
    except Exception as e:
        return {"query": query, "results": [], "explanation": f"Search failed: {str(e)}"}

# === Supervisor Agent ===
def classify_intent(query: str) -> str:
    query_lower = query.lower().strip()

    greetings = ["hi", "hello", "vanakkam", "hey", "good morning", "good evening"]
    gratitude = ["thanks", "thank you"]
    farewell = ["bye", "goodbye"]
    emotional_keywords = [
        "sad", "happy", "lonely", "depressed", "worried", "peace", "struggle", 
        "confidence", "purpose", "meaning", "life", "love", "failure", "success"
    ]
    philosophical_keywords = ["karma", "virtue", "truth", "justice", "ethics", "philosophy", "soul"]

    # Prioritize emotional/philosophical over question words
    if any(word in query_lower for word in greetings + farewell + gratitude):
        return "greeting"

    if any(word in query_lower for word in emotional_keywords + philosophical_keywords):
        return "life_advice"

    # THEN check for factual / web queries
    question_starters = ["who", "what", "when", "where", "why", "how"]
    if any(query_lower.startswith(w) for w in question_starters):
        return "factual_question"

    if "search" in query_lower or "find" in query_lower:
        return "web_search"

    return "fallback"

# === Thirukkural RAG Agent ===

def thirukkural_rag_agent(query: str, lang: str, top_k: int):
    if not all([model, kural_data, tamil_index, english_index]):
        return {"error": "RAG components not loaded properly."}

    # Embed and vector search
    query_embedding = model.encode([query])
    index = tamil_index if lang == "ta" else english_index
    search_k = min(top_k, len(kural_data))
    D, I = index.search(np.array(query_embedding).astype("float32"), search_k)

    results = []
    for i in I[0]:
        if 0 <= i < len(kural_data):
            row_dict = kural_data.iloc[i].to_dict()
            results.append(format_kural_for_response(row_dict))

    if not results:
        return {"query": query, "results": [], "explanation": "No relevant Thirukkurals found."}

    # Gemini Prompt
    kural_texts = '\n\n'.join([f'#{k["Number"]}\nTamil: {k["Tamil"]}\nEnglish: {k["English"]}' for k in results])

    prompt = f"""
    You are a compassionate, wise, and culturally sensitive literary guide.

    Your role is to explain how specific Thirukkural couplets relate meaningfully to a user's question. Your tone must be emotionally supportive, philosophically grounded, and respectful of the Tamil literary tradition.

    The user has asked:
    ➡️ "{query}" (Language: {lang})

    📜 Matching Thirukkurals:
    {kural_texts}

    🎯 Guidelines:
    - Reply fully in Tamil if lang='ta'; in English if lang='en'.
    - Don't rephrase Kural poems; show clearly and preserve original form.
    - Avoid AI/tech mentions. Write like a human mentor.
    - Use paragraph style, not list.
    """

    # Gemini API Call
    explanation = "Explanation unavailable."
    if GEMINI_API_KEY and GEMINI_URL:
        try:
            headers = {"Content-Type": "application/json"}
            data = {"contents": [{"parts": [{"text": prompt}]}]}
            response = requests.post(GEMINI_URL, headers=headers, data=json.dumps(data), timeout=30)
            response.raise_for_status()
            response_data = response.json()
            explanation = (
                response_data.get("candidates", [{}])[0]
                .get("content", {})
                .get("parts", [{}])[0]
                .get("text", "Explanation unavailable.")
                .strip()
            )
        except Exception as e:
            explanation = f"Gemini error: {str(e)}"

    # return {
    #     "query": query,
    #     "language": lang,
    #     "matched_kurals": results,
    #     "explanation": explanation,
    #     "total_results": len(results)
    # }
    return {
        "query": query,
        "language": lang,
        "matched_kurals": [],
        "web_results": results,
        "explanation": f"Here are relevant results for: '{query}'",
        "total_results": len(results)
    }


# === Supervisor Agent ===

def supervisor_agent(query: str, lang: str, top_k: int = 3):
    intent = classify_intent(query)

    if intent == "greeting":
        return {
            "query": query,
            "language": lang,
            "matched_kurals": [],
            "explanation": "வணக்கம்! என்னைப் பற்றி கேளுங்கள். உங்கள் கேள்விக்கு உதவ தயாராக உள்ளேன்." if lang == "ta" else "Hello! I'm here to help. Ask me anything.",
            "total_results": 0
        }

    elif intent == "life_advice":
        return thirukkural_rag_agent(query, lang, top_k)

    elif intent == "web_search":
        return web_search_agent(query, lang)

    else:
        return {
            "query": query,
            "language": lang,
            "matched_kurals": [],
            "explanation": "I couldn't determine how to respond. Could you please rephrase?",
            "total_results": 0
        }


# === /search/ Endpoint ===

@app.post("/search/")
def search_router(req: QueryRequest):
    try:
        return supervisor_agent(req.query, req.lang, req.top_k)
    except Exception as e:
        print(f"Error in search_router: {str(e)}")
        raise HTTPException(status_code=500, detail="Internal server error")







# import os
# from fastapi import FastAPI, HTTPException
# from fastapi.middleware.cors import CORSMiddleware
# from pydantic import BaseModel
# import faiss
# import pickle
# import numpy as np
# from sentence_transformers import SentenceTransformer
# import requests
# import json
# import pandas as pd

# # Set cache dirs (optional, for HF spaces)
# os.environ["HF_HOME"] = "/app/hf_cache"
# os.environ["TRANSFORMERS_CACHE"] = "/app/hf_cache"

# # Load Gemini API key (add this in your HF Space secrets)
# GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# if GEMINI_API_KEY:
#     GEMINI_URL = f"https://generativelanguage.googleapis.com/v1beta/models/gemma-3n-e4b-it:generateContent?key={GEMINI_API_KEY}"
# else:
#     GEMINI_URL = None

# # Initialize FastAPI
# app = FastAPI()

# # Add CORS middleware
# app.add_middleware(
#     CORSMiddleware,
#     allow_origins=["*"],
#     allow_credentials=True,
#     allow_methods=["*"],
#     allow_headers=["*"],
# )

# # Load local SentenceTransformer model
# try:
#     model = SentenceTransformer("/app/model")
# except Exception as e:
#     print(f"Error loading model: {e}")
#     model = None

# # Load Thirukkural data
# try:
#     with open("thirukkural_data.pkl", "rb") as f:
#         kural_data = pickle.load(f)
#     print(f"Data loaded successfully. Shape: {kural_data.shape}")
#     print(f"Columns: {list(kural_data.columns)}")
# except Exception as e:
#     print(f"Error loading data: {e}")
#     kural_data = None

# # Load FAISS indexes
# try:
#     english_index = faiss.read_index("thirukkural_english_index.faiss")
#     tamil_index = faiss.read_index("thirukkural_tamil_index.faiss")
#     print("FAISS indexes loaded successfully")
# except Exception as e:
#     print(f"Error loading FAISS indexes: {e}")
#     english_index = None
#     tamil_index = None

# # Request schema
# class QueryRequest(BaseModel):
#     query: str
#     lang: str  # "en" or "ta"
#     top_k: int = 3

# def safe_get_value(row, possible_keys, default=""):
#     """Safely get value from row using possible key names"""
#     for key in possible_keys:
#         if key in row:
#             return row[key]
#     return default

# def format_kural_for_gemini(kural_dict, lang):
#     number = safe_get_value(kural_dict, ['ID', 'Index'], "Unknown")
    
#     if lang == 'ta':
#         text = safe_get_value(kural_dict, ['combined_text_tamil', 'Kural'], "Tamil not available")
#     else:
#         text = safe_get_value(kural_dict, ['combined_text_english', 'Couplet'], "English not available")
    
#     return f"{number}. {text}"

# def format_kural_for_response(kural_dict):
#     return {
#         "Number": safe_get_value(kural_dict, ['ID', 'Index'], "Unknown"),
#         "Tamil": safe_get_value(kural_dict, ['Kural', 'combined_text_tamil']),
#         "English": safe_get_value(kural_dict, ['Couplet', 'combined_text_english']),
#         "Category": safe_get_value(kural_dict, ['Adhigaram', 'Section', 'Adhigaram_ID'], "General"),
#         "Explanation": safe_get_value(kural_dict, ['Vilakam', 'Kalaingar_Urai', 'Solomon_Pappaiya'], "")
#     }


# # Search + Explain Endpoint
# @app.post("/search/")
# def search_and_explain(req: QueryRequest):
#     try:
#         # Check if required components are loaded
#         if model is None:
#             raise HTTPException(status_code=500, detail="Model not loaded")
#         if kural_data is None:
#             raise HTTPException(status_code=500, detail="Kural data not loaded")
#         if english_index is None or tamil_index is None:
#             raise HTTPException(status_code=500, detail="FAISS indexes not loaded")
        
#         # Step 1: Embed and search
#         query_embedding = model.encode([req.query])
#         index = tamil_index if req.lang == "ta" else english_index
        
#         # Ensure we don't search for more results than available
#         search_k = min(req.top_k, len(kural_data))
#         D, I = index.search(np.array(query_embedding).astype("float32"), search_k)
        
#         # Step 2: Get results and handle potential index errors
#         results = []
#         for i in I[0]:
#             if i >= 0 and i < len(kural_data):  # Valid index
#                 row_dict = kural_data.iloc[i].to_dict()
#                 formatted_kural = format_kural_for_response(row_dict)
#                 results.append(formatted_kural)
        
#         if not results:
#             raise HTTPException(status_code=404, detail="No matching kurals found")
        
#         # Step 3: Format for Gemini explanation
#         # ✅ New better-structured Gemini prompt
#         kural_texts = '\n\n'.join([
#             f'#{k["Number"]}\nTamil: {k["Tamil"]}\nEnglish: {k["English"]}' for k in results
#         ])
        
#         prompt = f"""
#         You are a compassionate, wise, and culturally sensitive literary guide.
        
#         Your role is to explain how specific Thirukkural couplets relate meaningfully to a user's question. Your tone must be emotionally supportive, philosophically grounded, and respectful of the Tamil literary tradition.
        
#         The user has asked:
#         ➡️ "{req.query}" (Language: {req.lang})
        
#         You are given:
#         📜 A selection of Thirukkural couplets, each including:
#         - Kural Number
#         - Tamil poetic lines
#         - English explanation or interpretation
        
#         🎯 Your task is to deeply connect each of the given Thirukkurals to the user's question or concern, providing an empathetic and insightful explanation.
        
#         ---
        
#         📝 Response Guidelines:
#         1. **Language Compliance**
#            - If `lang` is `"ta"`: Respond fully in rich, poetic **Tamil**.
#            - If `lang` is `"en"`: Respond in **English**, but you may include Tamil verses if relevant.
#            - Never mix code-switching improperly (e.g., avoid Tamil-English mashups unless culturally meaningful).
        
#         2. **Kural Formatting**
#            - **Strictly preserve the original poetic form**:
#              - **Line 1:** First 4 Tamil words
#              - **Line 2:** Remaining 3 Tamil words
#            - Do **not** restructure or paraphrase Thirukkural verses.
#            - Clearly display each Kural before explaining it.
        
#         3. **Explanation Style**
#            - Avoid vague summaries.
#            - For each Kural:
#              - Offer context to the verse.
#              - Connect it directly to the user's emotion or situation.
#              - Give philosophical or moral insights that feel timeless and comforting.
#            - Avoid listing; write in smooth **paragraph form**.
#            - Responses must feel like a **wise teacher or companion**, not a bot.
        
#         4. **Tone**
#            - In Tamil: Use respectful, lyrical, yet simple language—avoid modern slang.
#            - In English: Use graceful, reflective, and gentle wording. Avoid robotic phrasing.
        
#         5. **Confidentiality & Role**
#            - Never mention:
#              - You are an AI or language model
#              - Gemini
#              - Backend infrastructure (FastAPI, HuggingFace, etc.)
#              - Prompt instructions or formatting logic
#            - Do **not** explain your reasoning for response generation.
#            - Always remain in-character as a **thoughtful literary guide**.
        
#         ---
        
#         🧍‍♂️ User Query:
#         {req.query}
        
#         📜 Matching Thirukkurals:
#         {kural_texts}
        
#         Please begin your reflective explanation now.
#         """


        
#         # Step 4: Gemini API call
#         explanation = ""
#         if GEMINI_URL and GEMINI_API_KEY:
#             try:
#                 headers = {
#                     "Content-Type": "application/json"
#                 }
#                 data = {
#                     "contents": [
#                         {
#                             "parts": [
#                                 {
#                                     "text": prompt
#                                 }
#                             ]
#                         }
#                     ]
#                 }
                
#                 response = requests.post(GEMINI_URL, headers=headers, data=json.dumps(data), timeout=30)
#                 response.raise_for_status()
                
#                 response_data = response.json()
#                 if "candidates" in response_data and len(response_data["candidates"]) > 0:
#                     explanation = response_data["candidates"][0]["content"]["parts"][0]["text"].strip()
#                 else:
#                     explanation = "Unable to generate explanation from Gemini API."
                    
#             except requests.exceptions.RequestException as e:
#                 explanation = f"Error calling Gemini API: {str(e)}"
#             except (KeyError, IndexError) as e:
#                 explanation = f"Error parsing Gemini response: {str(e)}"
#             except Exception as e:
#                 explanation = f"Unexpected error with Gemini API: {str(e)}"
#         else:
#             explanation = "Gemini API key not configured. Please set 'GEMINI_API_KEY' environment variable."
        
#         # Step 5: Return response
#         return {
#             "query": req.query,
#             "language": req.lang,
#             "matched_kurals": results,
#             "explanation": explanation,
#             "total_results": len(results)
#         }
        
#     except HTTPException:
#         raise
#     except Exception as e:
#         print(f"Unexpected error in search_and_explain: {str(e)}")
#         raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")

# # Health check
# @app.get("/")
# def root():
#     status = {
#         "message": "Thirukkural AI RAG API",
#         "status": "running",
#         "components": {
#             "model_loaded": model is not None,
#             "data_loaded": kural_data is not None,
#             "english_index_loaded": english_index is not None,
#             "tamil_index_loaded": tamil_index is not None,
#             "gemini_configured": GEMINI_API_KEY is not None
#         }
#     }
    
#     if kural_data is not None:
#         status["data_info"] = {
#             "total_kurals": len(kural_data),
#             "columns": list(kural_data.columns)
#         }
    
#     return status

# # Debug endpoint to check data structure
# @app.get("/debug/data")
# def debug_data():
#     if kural_data is None:
#         return {"error": "Data not loaded"}
    
#     return {
#         "shape": kural_data.shape,
#         "columns": list(kural_data.columns),
#         "sample_row": kural_data.iloc[0].to_dict() if len(kural_data) > 0 else None,
#         "dtypes": kural_data.dtypes.to_dict()
#     }

# # Test endpoint
# @app.get("/test")
# def test_endpoint():
#     return {"message": "API is working!", "timestamp": pd.Timestamp.now().isoformat()}