Spaces:
Running
Running
File size: 17,024 Bytes
9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 8913f77 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 9bf19c4 5f0cfa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import os
import json
from typing import Dict, Any, List
from groq import Groq
from dotenv import load_dotenv
load_dotenv()
class LLMRecommendations:
def __init__(self):
try:
self.client = Groq(api_key=os.getenv('GROQ_API_KEY'))
self.available = True
except Exception:
self.client = None
self.available = False
def generate_recommendations(self, url: str, technical_data: Dict[str, Any],
content_data: Dict[str, Any], keywords_data: Dict[str, Any],
backlinks_data: Dict[str, Any]) -> Dict[str, Any]:
if not self.available:
return self._generate_fallback_recommendations(technical_data, content_data, keywords_data, backlinks_data)
try:
context = self._prepare_context(url, technical_data, content_data, keywords_data, backlinks_data)
recommendations = self._query_llm(context)
return {
'recommendations_markdown': recommendations,
'executive_insights': self._generate_executive_insights(context),
'priority_actions': self._extract_priority_actions([recommendations]),
'data_source': 'Groq LLM Analysis',
'generated_at': context['analysis_date']
}
except Exception as e:
return self._generate_fallback_recommendations(technical_data, content_data, keywords_data, backlinks_data, error=str(e))
def _prepare_context(self, url: str, technical_data: Dict, content_data: Dict,
keywords_data: Dict, backlinks_data: Dict) -> Dict[str, Any]:
context = {
'website': url,
'analysis_date': technical_data.get('last_updated', ''),
'technical_seo': {
'mobile_score': technical_data.get('mobile_score', 0),
'desktop_score': technical_data.get('desktop_score', 0),
'core_web_vitals': technical_data.get('core_web_vitals', {}),
'issues_count': len(technical_data.get('issues', [])),
'top_issues': technical_data.get('issues', [])[:3]
},
'content_audit': {
'pages_analyzed': content_data.get('pages_analyzed', 0),
'metadata_completeness': content_data.get('metadata_completeness', {}),
'avg_word_count': content_data.get('avg_word_count', 0),
'cta_presence': content_data.get('cta_presence', 0),
'content_freshness': content_data.get('content_freshness', {})
},
'keywords': {
'total_keywords': keywords_data.get('total_keywords', 0),
'position_distribution': keywords_data.get('position_distribution', {}),
'data_available': not keywords_data.get('placeholder', False),
'opportunity_keywords': len(keywords_data.get('opportunity_keywords', [])),
'data_source': keywords_data.get('data_source', 'Unknown')
},
'backlinks': {
'total_backlinks': backlinks_data.get('total_backlinks', 0),
'total_ref_domains': backlinks_data.get('total_ref_domains', 0),
'domain_rating': backlinks_data.get('domain_rating', 0),
'monthly_changes': backlinks_data.get('monthly_changes', {}),
'data_available': not backlinks_data.get('placeholder', False),
'data_source': backlinks_data.get('data_source', 'Unknown')
}
}
return context
def _query_llm(self, context: Dict[str, Any]) -> List[str]:
prompt = f"""
You are an expert SEO consultant analyzing a comprehensive SEO audit for {context['website']}. Based on the data below, provide specific, actionable SEO recommendations.
TECHNICAL SEO DATA:
- Mobile Performance Score: {context['technical_seo']['mobile_score']}/100
- Desktop Performance Score: {context['technical_seo']['desktop_score']}/100
- Core Web Vitals: {json.dumps(context['technical_seo']['core_web_vitals'])}
- Critical Issues Found: {context['technical_seo']['issues_count']}
- Top Issues: {context['technical_seo']['top_issues']}
CONTENT AUDIT DATA:
- Pages Analyzed: {context['content_audit']['pages_analyzed']}
- Metadata Completeness: {json.dumps(context['content_audit']['metadata_completeness'])}
- Average Word Count: {context['content_audit']['avg_word_count']}
- CTA Presence: {context['content_audit']['cta_presence']}%
- Content Freshness: {json.dumps(context['content_audit']['content_freshness'])}
KEYWORDS DATA:
- Total Keywords Tracked: {context['keywords']['total_keywords']}
- Position Distribution: {json.dumps(context['keywords']['position_distribution'])}
- Data Available: {context['keywords']['data_available']}
- Opportunity Keywords: {context['keywords']['opportunity_keywords']}
- Source: {context['keywords']['data_source']}
BACKLINKS DATA:
- Total Backlinks: {context['backlinks']['total_backlinks']}
- Referring Domains: {context['backlinks']['total_ref_domains']}
- Domain Rating: {context['backlinks']['domain_rating']}
- Monthly Changes: {json.dumps(context['backlinks']['monthly_changes'])}
- Data Available: {context['backlinks']['data_available']}
- Source: {context['backlinks']['data_source']}
CRITICAL INSTRUCTIONS:
1. Analyze the data holistically across all 4 modules
2. Identify the TOP 3 most critical issues that need immediate attention
3. Provide specific, actionable recommendations with clear steps
4. If API data is missing (placeholder: true), acknowledge this and focus on available data
5. Prioritize recommendations by potential impact and ease of implementation
6. Include technical optimizations, content improvements, keyword opportunities, and link building strategies
7. Provide estimated timelines and resources needed for each recommendation
8. IMPORTANT: Use ONLY plain text format with markdown syntax - NO tables, NO complex formatting, NO HTML
9. Format your response as clean markdown that can be rendered properly
Generate exactly 8-12 specific recommendations using simple markdown format:
## Priority: HIGH/MEDIUM/LOW
**Action Title**
Description with clear steps and expected impact.
Timeline: X weeks
Priority Levels: HIGH, MEDIUM, LOW
Focus on actionable items that can be implemented within 30-90 days.
Use simple markdown formatting only - headers, bold text, and bullet points.
Response:
"""
try:
chat_completion = self.client.chat.completions.create(
messages=[
{'role': 'user', 'content': prompt}
],
model="openai/gpt-oss-120b",
stream=False,
temperature=0.1,
max_tokens=3000
)
response = chat_completion.choices[0].message.content.strip()
# Return the full markdown response instead of parsing individual recommendations
return response
except Exception as e:
return [f"LLM Error: {str(e)}"]
def _generate_executive_insights(self, context: Dict[str, Any]) -> List[str]:
insights = []
mobile_score = context['technical_seo']['mobile_score']
desktop_score = context['technical_seo']['desktop_score']
avg_score = (mobile_score + desktop_score) / 2
if avg_score < 50:
insights.append(f"π΄ Critical: Website performance is severely impacting user experience (avg: {avg_score:.0f}/100)")
elif avg_score < 75:
insights.append(f"π‘ Warning: Website performance needs improvement (avg: {avg_score:.0f}/100)")
else:
insights.append(f"π’ Good: Website performance is solid (avg: {avg_score:.0f}/100)")
pages = context['content_audit']['pages_analyzed']
if pages > 0:
metadata = context['content_audit']['metadata_completeness']
title_pct = (metadata.get('with_title', 0) / pages * 100) if pages > 0 else 0
if title_pct < 80:
insights.append(f"π΄ Content Issue: {100-title_pct:.0f}% of pages missing critical metadata")
else:
insights.append(f"π’ Content Quality: Metadata completeness is good ({title_pct:.0f}%)")
if context['keywords']['data_available']:
total_keywords = context['keywords']['total_keywords']
pos_dist = context['keywords']['position_distribution']
top_10_pct = (pos_dist.get('top_10', 0) / total_keywords * 100) if total_keywords > 0 else 0
if top_10_pct < 15:
insights.append(f"π΄ SEO Visibility: Only {top_10_pct:.0f}% of keywords rank in top 10")
elif top_10_pct < 30:
insights.append(f"π‘ SEO Opportunity: {top_10_pct:.0f}% of keywords in top 10 - room for growth")
else:
insights.append(f"π’ Strong SEO: {top_10_pct:.0f}% of keywords ranking in top 10")
else:
insights.append("π Connect keyword tracking tools for visibility insights")
if context['backlinks']['data_available']:
ref_domains = context['backlinks']['total_ref_domains']
domain_rating = context['backlinks']['domain_rating']
if ref_domains < 50:
insights.append(f"π΄ Link Building: Low referring domains ({ref_domains}) - aggressive outreach needed")
elif ref_domains < 200:
insights.append(f"π‘ Authority Building: Moderate link profile ({ref_domains} domains)")
else:
insights.append(f"π’ Strong Authority: Healthy backlink profile ({ref_domains} referring domains)")
else:
insights.append("π Connect backlink analysis tools for authority insights")
return insights
def _extract_priority_actions(self, recommendations: List[str]) -> List[Dict[str, str]]:
priority_actions = []
# Handle the case where recommendations is a single string (markdown)
if isinstance(recommendations, list) and len(recommendations) == 1:
markdown_text = recommendations[0]
elif isinstance(recommendations, str):
markdown_text = recommendations
else:
markdown_text = ""
# Extract high priority actions from markdown
if markdown_text:
lines = markdown_text.split('\n')
current_priority = None
current_title = None
current_description = []
for line in lines:
line = line.strip()
if line.startswith('## Priority:'):
# Save previous action if exists
if current_title and current_priority == 'HIGH':
priority_actions.append({
'title': current_title,
'description': ' '.join(current_description).strip(),
'priority': 'HIGH'
})
# Start new action
current_priority = line.replace('## Priority:', '').strip()
current_title = None
current_description = []
elif line.startswith('**') and line.endswith('**'):
current_title = line.replace('**', '').strip()
elif line and not line.startswith('#'):
current_description.append(line)
# Save last action if exists
if current_title and current_priority == 'HIGH':
priority_actions.append({
'title': current_title,
'description': ' '.join(current_description).strip(),
'priority': 'HIGH'
})
# Fallback for old format
if not priority_actions and isinstance(recommendations, list):
for rec in recommendations:
if '**HIGH**' in rec or '**CRITICAL**' in rec:
parts = rec.replace('**HIGH**', '').replace('**CRITICAL**', '').strip()
if ':' in parts:
title, description = parts.split(':', 1)
priority_actions.append({
'title': title.strip(),
'description': description.strip(),
'priority': 'HIGH'
})
if not priority_actions and recommendations:
for i, rec in enumerate(recommendations[:3]):
if ':' in rec:
title, description = rec.split(':', 1)
priority_actions.append({
'title': title.replace('*', '').strip(),
'description': description.strip(),
'priority': 'HIGH'
})
return priority_actions[:5]
def _generate_fallback_recommendations(self, technical_data: Dict, content_data: Dict,
keywords_data: Dict, backlinks_data: Dict, error: str = None) -> Dict[str, Any]:
recommendations = []
mobile_score = technical_data.get('mobile_score', 0)
desktop_score = technical_data.get('desktop_score', 0)
if mobile_score < 50:
recommendations.append("**HIGH** Improve Mobile Performance: Optimize images, reduce JavaScript, enable compression")
if desktop_score < 50:
recommendations.append("**HIGH** Improve Desktop Performance: Optimize server response time, minimize CSS and JavaScript")
pages = content_data.get('pages_analyzed', 0)
if pages > 0:
metadata = content_data.get('metadata_completeness', {})
if metadata.get('with_title', 0) < pages * 0.8:
recommendations.append("**HIGH** Fix Metadata: Add missing title tags and meta descriptions")
if content_data.get('avg_word_count', 0) < 300:
recommendations.append("**MEDIUM** Enhance Content: Increase average page content length")
if not keywords_data.get('placeholder', False):
total_keywords = keywords_data.get('total_keywords', 0)
pos_dist = keywords_data.get('position_distribution', {})
if total_keywords > 0 and pos_dist.get('top_10', 0) < total_keywords * 0.2:
recommendations.append("**HIGH** Improve Keyword Rankings: Focus on on-page SEO for underperforming keywords")
else:
recommendations.append("**MEDIUM** Set Up Keyword Tracking: Connect Google Search Console for keyword insights")
if not backlinks_data.get('placeholder', False):
ref_domains = backlinks_data.get('total_ref_domains', 0)
if ref_domains < 50:
recommendations.append("**HIGH** Build Authority: Implement aggressive link building and outreach strategy")
else:
recommendations.append("**MEDIUM** Set Up Backlink Monitoring: Add RapidAPI key for comprehensive link analysis")
if not recommendations:
recommendations = [
"**HIGH** Audit Technical Issues: Review site speed and mobile performance",
"**MEDIUM** Optimize Content Strategy: Ensure all pages have unique, valuable content",
"**LOW** Monitor SEO Performance: Set up tracking for keywords and backlinks"
]
insights = [
"π Basic SEO analysis completed - connect APIs for deeper insights",
f"π Analyzed {pages} pages for content quality",
"β οΈ Enhanced recommendations require API integrations"
]
if error:
insights.append(f"β LLM Error: {error}")
# Convert recommendations list to markdown format
markdown_recommendations = "\n".join([f"## Priority: HIGH\n**{rec.replace('**HIGH**', '').replace('**MEDIUM**', '').replace('**LOW**', '').strip()}**\n" for rec in recommendations])
return {
'recommendations_markdown': markdown_recommendations,
'executive_insights': insights,
'priority_actions': [
{
'title': 'Connect SEO APIs',
'description': 'Set up Google Search Console and RapidAPI for comprehensive analysis',
'priority': 'HIGH'
}
],
'data_source': 'Fallback Analysis',
'generated_at': technical_data.get('last_updated', '')
} |