Spaces:
Sleeping
Sleeping
Create app
Browse files
app.py
CHANGED
|
@@ -1,3 +1,58 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import BartForSequenceClassification, BartTokenizer
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 6 |
+
from transformers import Pipeline
|
| 7 |
|
| 8 |
+
te_tokenizer = BartTokenizer.from_pretrained('facebook/bart-large-mnli')
|
| 9 |
+
te_model = BartForSequenceClassification.from_pretrained('facebook/bart-large-mnli')
|
| 10 |
+
qa_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
|
| 11 |
+
qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto")
|
| 12 |
+
|
| 13 |
+
def predict(context, intent):
|
| 14 |
+
input_text = "In one word, what is the opposite of: " + intent + "?"
|
| 15 |
+
input_ids = qa_tokenizer(input_text, return_tensors="pt")
|
| 16 |
+
encoded_input = qa_tokenizer(input_ids, return_tensors="pt")
|
| 17 |
+
opposite_output = qa_tokenizer.decode(qa_model.generate(encoded_input)[0])
|
| 18 |
+
input_text = "In one word, what is the following describing: " + context
|
| 19 |
+
input_ids = qa_tokenizer(input_text, return_tensors="pt")
|
| 20 |
+
encoded_input = qa_tokenizer(input_ids, return_tensors="pt")
|
| 21 |
+
object_output = qa_tokenizer.decode(qa_model.generate(encoded_input)[0])
|
| 22 |
+
batch = ['I think the ' + object_output + ' are long.', 'I think the ' + object_output + ' are ' + opposite_output, 'I think the ' + object_output + ' are the perfect']
|
| 23 |
+
outputs = []
|
| 24 |
+
for i, hypothesis in enumerate(batch):
|
| 25 |
+
input_ids = te_tokenizer.encode(context, hypothesis, return_tensors='pt')
|
| 26 |
+
# -> [contradiction, neutral, entailment]
|
| 27 |
+
logits = te_model(input_ids)[0][0]
|
| 28 |
+
|
| 29 |
+
if (i == 2):
|
| 30 |
+
# -> [contradiction, entailment]
|
| 31 |
+
probs = logits[[0,2]].softmax(dim=0)
|
| 32 |
+
else:
|
| 33 |
+
probs = logits.softmax(dim=0)
|
| 34 |
+
outputs.append(probs)
|
| 35 |
+
|
| 36 |
+
# -> [entailment, contradiction]
|
| 37 |
+
outputs[2] = outputs[2].flip(dims=[0])
|
| 38 |
+
# -> [entailment, neutral, contradiction]
|
| 39 |
+
outputs[0] = outputs[0].flip(dims=[0])
|
| 40 |
+
pn_tensor = (outputs[0] + outputs[1]).softmax(dim=0)
|
| 41 |
+
pn_tensor[1] = pn_tensor[1] * outputs[2][0]
|
| 42 |
+
pn_tensor[2] = pn_tensor[2] * outputs[2][1]
|
| 43 |
+
pn_tensor[0] = pn_tensor[0] * outputs[2][1]
|
| 44 |
+
|
| 45 |
+
pn_tensor = F.normalize(pn_tensor, p=1, dim=0)
|
| 46 |
+
|
| 47 |
+
pn_tensor = pn_tensor.softmax(dim=0)
|
| 48 |
+
return {"entailment": pn_tensor[0].item(), "neutral": pn_tensor[1].item(), "contradiction": pn_tensor[2].item()}
|
| 49 |
+
|
| 50 |
+
gradio_app = gr.Interface(
|
| 51 |
+
predict,
|
| 52 |
+
inputs=gr.Text(label="Input sentence"),
|
| 53 |
+
outputs=[gr.Label(num_top_classes=3)],
|
| 54 |
+
title="Hot Dog? Or Not?",
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
gradio_app.launch()
|