File size: 6,216 Bytes
81f9934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import asyncio
import gradio as gr
from dotenv import load_dotenv
import time
from prompt_enhancer import PromptEnhancer, get_available_models
# Load environment variables
load_dotenv(encoding='utf-8')
# Check if running on Hugging Face Spaces
IS_HF_SPACE = os.environ.get("SPACE_ID") is not None
# Configure API Key
if IS_HF_SPACE:
# Use the Hugging Face Spaces secret
api_key = os.environ.get("OPENROUTER_API_KEY")
else:
# Use local .env file
api_key = os.getenv("OPENROUTER_API_KEY")
if not api_key:
print("Warning: OPENROUTER_API_KEY not found!")
# Cache for available models
available_models = []
async def fetch_models():
"""Fetch available models from OpenRouter"""
global available_models
try:
models = await get_available_models()
available_models = models
return [f"{model['id']} - {model.get('name', 'No name')}" for model in models]
except Exception as e:
print(f"Error fetching models: {e}")
# Fallback models if API call fails
return [
"anthropic/claude-3-haiku - Claude 3 Haiku",
"anthropic/claude-3-sonnet - Claude 3 Sonnet",
"anthropic/claude-3-opus - Claude 3 Opus",
"openai/gpt-4o - GPT-4o",
"openai/gpt-4o-mini - GPT-4o Mini"
]
def get_model_id(model_display_name):
"""Extract model ID from display name"""
if " - " in model_display_name:
return model_display_name.split(" - ")[0]
return model_display_name
async def enhance_prompt(prompt, model_choice):
"""Enhance the prompt using the selected model"""
if not prompt.strip():
return "Please enter a prompt to enhance.", "", ""
start_time = time.time()
model_id = get_model_id(model_choice)
enhancer = PromptEnhancer(model_id)
try:
# Process prompt
expanded_prompt = await enhancer.analyze_and_expand_input(prompt)
suggested_enhancements = await enhancer.suggest_enhancements(prompt)
decomposition_and_reasoning = await enhancer.decompose_and_add_reasoning(expanded_prompt)
# Assemble components
components = {
"expanded_prompt": expanded_prompt,
"decomposition_and_reasoninng": decomposition_and_reasoning,
"suggested_enhancements": suggested_enhancements
}
advanced_prompt = await enhancer.assemble_prompt(components)
elapsed_time = time.time() - start_time
# Generate summary
stats = f"""
Model: {model_id}
Processing Time: {elapsed_time:.2f} seconds
Prompt Tokens: {enhancer.prompt_tokens}
Completion Tokens: {enhancer.completion_tokens}
"""
return advanced_prompt, expanded_prompt, stats
except Exception as e:
return f"Error: {str(e)}", "", ""
# Function to run async operations from Gradio
def run_async(fn):
def wrapper(*args, **kwargs):
return asyncio.run(fn(*args, **kwargs))
return wrapper
# Create the Gradio interface
async def create_ui():
# Get initial model list
model_choices = await fetch_models()
default_model = model_choices[0] if model_choices else "anthropic/claude-3-haiku - Claude 3 Haiku"
with gr.Blocks(title="Advanced Prompt Generator", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# ๐ Advanced Prompt Generator
Transform your basic prompts into highly optimized, structured prompts for better AI responses.
## How it works:
1. Enter your basic prompt
2. Select an AI model
3. Get an enhanced, structured prompt with decomposition and reasoning
""")
with gr.Row():
with gr.Column(scale=3):
prompt_input = gr.Textbox(
label="Enter Your Basic Prompt",
placeholder="E.g. Explain quantum computing",
lines=4
)
model_dropdown = gr.Dropdown(
choices=model_choices,
label="Select Model",
value=default_model
)
refresh_button = gr.Button("๐ Refresh Models")
with gr.Row():
submit_button = gr.Button("๐ฎ Enhance Prompt", variant="primary")
clear_button = gr.Button("๐งน Clear")
with gr.Column(scale=4):
with gr.Tabs():
with gr.TabItem("Enhanced Prompt"):
enhanced_output = gr.Textbox(
label="Enhanced Prompt",
placeholder="Your enhanced prompt will appear here...",
lines=15
)
with gr.TabItem("Expanded Prompt Only"):
expanded_output = gr.Textbox(
label="Expanded Prompt",
placeholder="Your expanded prompt will appear here...",
lines=15
)
with gr.TabItem("Stats"):
stats_output = gr.Textbox(
label="Processing Stats",
lines=5
)
# Define event handlers
refresh_button.click(
fn=run_async(fetch_models),
outputs=model_dropdown
)
submit_button.click(
fn=run_async(enhance_prompt),
inputs=[prompt_input, model_dropdown],
outputs=[enhanced_output, expanded_output, stats_output]
)
clear_button.click(
fn=lambda: ("", "", ""),
outputs=[enhanced_output, expanded_output, stats_output]
)
return app
# Launch the app
if __name__ == "__main__":
app = asyncio.run(create_ui())
app.launch(debug=True) |