ldcast_code / ldcast /analysis /histogram.py
weatherforecast1024's picture
Upload folder using huggingface_hub
d2f661a verified
import concurrent.futures
import multiprocessing
import os
import netCDF4
import numpy as np
from scipy.interpolate import interp1d
from ..features.io import load_batch, decode_saved_var_to_rainrate
def histogram(observation, forecasts, bins):
N_bins = len(bins)-1
N_timesteps = observation.shape[2]
obs_hist = np.zeros((N_bins, N_timesteps), dtype=np.uint64)
fc_hist = np.zeros((N_bins, N_timesteps), dtype=np.uint64)
for t in range(observation.shape[2]):
obs = observation[:,:,t,...].flatten()
fc = forecasts[:,:,t,...].flatten()
obs_hist[:,t] = np.histogram(obs, bins=bins)[0]
fc_hist[:,t] = np.histogram(fc, bins=bins)[0]
return (obs_hist, fc_hist)
def hist_from_file(fn, bins):
print(fn)
(_, y, y_pred) = load_batch(fn, threshold=bins[0])
return histogram(y, y_pred, bins)
def save_histogram_for_dataset(data_dir, result_fn, bins=(0.05,120,100)):
files = sorted(os.listdir(data_dir))
files = [os.path.join(data_dir,fn) for fn in files]
bins = np.exp(np.linspace(np.log(bins[0]), np.log(bins[1]), bins[2]))
bins = np.hstack((0, bins))
N_threads = multiprocessing.cpu_count()
with concurrent.futures.ProcessPoolExecutor(N_threads) as executor:
futures = []
for fn in files:
args = (hist_from_file, fn, bins)
futures.append(executor.submit(*args))
(obs_hist, fc_hist) = zip(*(f.result() for f in futures))
obs_hist = sum(obs_hist)
fc_hist = sum(fc_hist)
with netCDF4.Dataset(result_fn, 'w') as ds:
ds.createDimension("dim_bin", obs_hist.shape[0])
ds.createDimension("dim_time_future", obs_hist.shape[1])
var_params = {"zlib": True, "complevel": 1}
obs_var = ds.createVariable(
f"obs_hist", np.uint64,
("dim_bin", "dim_time_future"),
**var_params
)
obs_var[:] = obs_hist
fc_var = ds.createVariable(
f"fc_hist", np.uint64,
("dim_bin", "dim_time_future"),
**var_params
)
fc_var[:] = fc_hist
ds.createDimension("dim_bin_edge", len(bins))
bin_var = ds.createVariable(
f"bins", np.float64,
("dim_bin_edge",),
**var_params
)
bin_var[:] = bins
def load_histogram(fn):
with netCDF4.Dataset(fn, 'r') as ds:
obs_hist = np.array(ds["obs_hist"][:], copy=False)
fc_hist = np.array(ds["fc_hist"][:], copy=False)
bins = np.array(ds["bins"][:], copy=False)
return (obs_hist, fc_hist, bins)
class ProbabilityMatch:
def __init__(self, obs_hist, fc_hist, bins):
obs_c = obs_hist.cumsum()
obs_c = obs_c / obs_c[-1]
fc_c = fc_hist.cumsum()
fc_c = fc_c / fc_c[-1]
self.obs_cdf = interp1d(np.hstack((0,obs_c)), bins, fill_value='extrapolate')
self.fc_cdf = interp1d(bins, np.hstack((0,fc_c)), fill_value='extrapolate')
def __call__(self, x):
return self.obs_cdf(self.fc_cdf(x))
def probability_match_timesteps(obs_hist, fc_hist, bins):
num_timesteps = obs_hist.shape[1]
return [
ProbabilityMatch(obs_hist[:,t], fc_hist[:,t], bins)
for t in range(num_timesteps)
]