| for k in 1 2 3 5 10 | |
| do | |
| python finetune_custom.py \ | |
| --mode full \ | |
| --k $k \ | |
| --batch_size 64 \ | |
| --num_epochs 200 \ | |
| --checkpoint './checkpoint/UniMTS.pth' \ | |
| --X_train_path 'UniMTS_data/TNDA-HAR/X_train.npy' \ | |
| --y_train_path 'UniMTS_data/TNDA-HAR/y_train.npy' \ | |
| --X_test_path 'UniMTS_data/TNDA-HAR/X_test.npy' \ | |
| --y_test_path 'UniMTS_data/TNDA-HAR/y_test.npy' \ | |
| --config_path 'UniMTS_data/TNDA-HAR/TNDA-HAR.json' \ | |
| --joint_list 20 2 21 3 11 \ | |
| --original_sampling_rate 50 \ | |
| --num_class 8 | |
| done | |
| python finetune_custom.py \ | |
| --mode full \ | |
| --batch_size 64 \ | |
| --num_epochs 200 \ | |
| --checkpoint './checkpoint/UniMTS.pth' \ | |
| --X_train_path 'UniMTS_data/TNDA-HAR/X_train.npy' \ | |
| --y_train_path 'UniMTS_data/TNDA-HAR/y_train.npy' \ | |
| --X_test_path 'UniMTS_data/TNDA-HAR/X_test.npy' \ | |
| --y_test_path 'UniMTS_data/TNDA-HAR/y_test.npy' \ | |
| --config_path 'UniMTS_data/TNDA-HAR/TNDA-HAR.json' \ | |
| --joint_list 20 2 21 3 11 \ | |
| --original_sampling_rate 50 \ | |
| --num_class 8 | |