--- library_name: transformers base_model: - tiiuae/Falcon-H1-34B-Instruct --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [tiiuae/Falcon-H1-34B-Instruct](https://huggingface.co/tiiuae/Falcon-H1-34B-Instruct). ### Example usage: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline model_id = "yujiepan/falcon-h1-tiny-random" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, trust_remote_code=True, ) pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, trust_remote_code=True) print(pipe('Write an article about Artificial Intelligence.', max_new_tokens=32)) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, set_seed, ) source_model_id = "tiiuae/Falcon-H1-34B-Instruct" save_folder = "/tmp/yujiepan/falcon-h1-tiny-random" processor = AutoTokenizer.from_pretrained(source_model_id) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) for k, v in config_json.get('auto_map', {}).items(): config_json['auto_map'][k] = f'{source_model_id}--{v}' config_json['head_dim'] = 32 config_json['hidden_size'] = 8 config_json['intermediate_size'] = 64 config_json['num_attention_heads'] = 8 config_json['num_key_value_heads'] = 4 config_json['num_hidden_layers'] = 2 config_json['mamba_d_head'] = 32 config_json['mamba_n_heads'] = 8 config_json['mamba_d_state'] = 32 config_json['mamba_d_ssm'] = config_json['mamba_d_head'] * \ config_json['mamba_n_heads'] config_json['mamba_expand'] = config_json['mamba_d_ssm'] // config_json['hidden_size'] config_json['tie_word_embeddings'] = True with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) automap = config_json.get('auto_map', None) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, trust_remote_code=True) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) print(model) if automap: with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config_json = json.load(f) config_json['auto_map'] = automap with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) for python_file in Path(save_folder).glob('*.py'): python_file.unlink() ``` ### Printing the model: ```text FalconH1ForCausalLM( (model): FalconH1Model( (embed_tokens): Embedding(261120, 8, padding_idx=0) (layers): ModuleList( (0-1): 2 x FalconH1DecoderLayer( (feed_forward): FalconH1MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLUActivation() ) (mamba): FalconH1Mixer( (act): SiLUActivation() (conv1d): Conv1d(384, 384, kernel_size=(4,), stride=(1,), padding=(3,), groups=384) (in_proj): Linear(in_features=8, out_features=648, bias=False) (norm): FalconH1RMSNormGated() (out_proj): Linear(in_features=256, out_features=8, bias=False) ) (self_attn): FalconH1Attention( (q_proj): Linear(in_features=8, out_features=256, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (input_layernorm): FalconH1RMSNorm((8,), eps=1e-05) (pre_ff_layernorm): FalconH1RMSNorm((8,), eps=1e-05) ) ) (final_layernorm): FalconH1RMSNorm((8,), eps=1e-05) (rotary_emb): FalconH1RotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=261120, bias=False) ) ```