TRIC-Trilingual Recognition of Irony with Confidence
Collection
This collections contains data and models used for the TRIC (Trilingual Recognition of Irony with Confidence) paper (under review)
•
17 items
•
Updated
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | F1 | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.2686 | 0.2105 | 100 | 1.0348 | 3.5486 | 1.8838 | 1.4950 | -0.1470 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 1.0527 | 0.4211 | 200 | 1.0271 | 3.3385 | 1.8272 | 1.4928 | -0.0791 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 1.0554 | 0.6316 | 300 | 0.9925 | 3.0827 | 1.7557 | 1.4434 | 0.0036 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 0.9855 | 0.8421 | 400 | 0.9574 | 3.2051 | 1.7903 | 1.3379 | -0.0360 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 0.9683 | 1.0526 | 500 | 0.9145 | 2.9293 | 1.7115 | 1.3043 | 0.0532 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 0.9035 | 1.2632 | 600 | 0.9039 | 2.9731 | 1.7243 | 1.2658 | 0.0390 | 0.5333 | 0.4444 | 0.6667 | 0.6667 |
| 0.9152 | 1.4737 | 700 | 0.8716 | 2.8287 | 1.6819 | 1.2489 | 0.0857 | 0.5961 | 0.6692 | 0.6821 | 0.6821 |
| 0.8686 | 1.6842 | 800 | 0.8942 | 2.9308 | 1.7120 | 1.2728 | 0.0527 | 0.6840 | 0.6807 | 0.6904 | 0.6904 |
| 0.8318 | 1.8947 | 900 | 0.8755 | 2.8950 | 1.7015 | 1.2539 | 0.0643 | 0.6879 | 0.6851 | 0.6987 | 0.6987 |
| 0.7712 | 2.1053 | 1000 | 0.8290 | 2.8370 | 1.6843 | 1.1719 | 0.0830 | 0.6900 | 0.6982 | 0.7141 | 0.7141 |
| 0.7223 | 2.3158 | 1100 | 0.8509 | 2.9955 | 1.7308 | 1.1748 | 0.0318 | 0.6965 | 0.6953 | 0.7094 | 0.7094 |
| 0.673 | 2.5263 | 1200 | 0.8089 | 2.8114 | 1.6767 | 1.1317 | 0.0913 | 0.7194 | 0.7186 | 0.7295 | 0.7295 |
| 0.7588 | 2.7368 | 1300 | 0.7937 | 2.7320 | 1.6529 | 1.1221 | 0.1170 | 0.7088 | 0.7141 | 0.7272 | 0.7272 |
| 0.7272 | 2.9474 | 1400 | 0.7876 | 2.8003 | 1.6734 | 1.0889 | 0.0949 | 0.7127 | 0.7236 | 0.7343 | 0.7343 |
| 0.7067 | 3.1579 | 1500 | 0.7953 | 2.8252 | 1.6808 | 1.1103 | 0.0868 | 0.7235 | 0.7255 | 0.7367 | 0.7367 |
| 0.6188 | 3.3684 | 1600 | 0.8261 | 3.0567 | 1.7483 | 1.1120 | 0.0120 | 0.6868 | 0.7144 | 0.7224 | 0.7224 |
| 0.6739 | 3.5789 | 1700 | 0.7795 | 2.8149 | 1.6778 | 1.0859 | 0.0902 | 0.7074 | 0.7195 | 0.7307 | 0.7307 |
| 0.6268 | 3.7895 | 1800 | 0.7979 | 2.8785 | 1.6966 | 1.0905 | 0.0696 | 0.7009 | 0.7159 | 0.7272 | 0.7272 |
| 0.6153 | 4.0 | 1900 | 0.8107 | 2.9016 | 1.7034 | 1.1205 | 0.0621 | 0.7188 | 0.7176 | 0.7284 | 0.7284 |
| 0.5826 | 4.2105 | 2000 | 0.7920 | 2.8243 | 1.6806 | 1.0940 | 0.0871 | 0.7423 | 0.7404 | 0.7461 | 0.7461 |
| 0.5995 | 4.4211 | 2100 | 0.7702 | 2.6708 | 1.6343 | 1.0843 | 0.1367 | 0.7403 | 0.7385 | 0.7450 | 0.7450 |
| 0.5991 | 4.6316 | 2200 | 0.7650 | 2.6919 | 1.6407 | 1.0568 | 0.1299 | 0.7403 | 0.7430 | 0.7521 | 0.7521 |
| 0.5429 | 4.8421 | 2300 | 0.7610 | 2.7230 | 1.6502 | 1.0471 | 0.1198 | 0.7250 | 0.7346 | 0.7438 | 0.7438 |
| 0.5632 | 5.0526 | 2400 | 0.7815 | 2.7910 | 1.6706 | 1.0859 | 0.0979 | 0.7281 | 0.7308 | 0.7414 | 0.7414 |
| 0.5153 | 5.2632 | 2500 | 0.7490 | 2.7125 | 1.6470 | 1.0339 | 0.1232 | 0.7525 | 0.7536 | 0.7616 | 0.7616 |
| 0.5034 | 5.4737 | 2600 | 0.7857 | 2.9123 | 1.7065 | 1.0660 | 0.0587 | 0.7479 | 0.7466 | 0.7497 | 0.7497 |
| 0.5119 | 5.6842 | 2700 | 0.7614 | 2.7580 | 1.6607 | 1.0481 | 0.1085 | 0.7463 | 0.7449 | 0.7485 | 0.7485 |
| 0.511 | 5.8947 | 2800 | 0.7288 | 2.6286 | 1.6213 | 1.0034 | 0.1504 | 0.7498 | 0.7554 | 0.7628 | 0.7628 |
| 0.5119 | 6.1053 | 2900 | 0.7609 | 2.7530 | 1.6592 | 1.0489 | 0.1101 | 0.7394 | 0.7405 | 0.7497 | 0.7497 |
| 0.4733 | 6.3158 | 3000 | 0.7794 | 2.8620 | 1.6917 | 1.0572 | 0.0749 | 0.7252 | 0.7258 | 0.7367 | 0.7367 |
| 0.4909 | 6.5263 | 3100 | 0.7687 | 2.7897 | 1.6702 | 1.0660 | 0.0983 | 0.7570 | 0.7554 | 0.7604 | 0.7604 |
Base model
microsoft/mdeberta-v3-base