AndyBlocker commited on
Commit
603cbe7
·
verified ·
1 Parent(s): 851cd21

Simplify Model Card - remove specific metrics, keep essential model information

Browse files
Files changed (1) hide show
  1. README.md +5 -67
README.md CHANGED
@@ -9,41 +9,6 @@ tags:
9
  - energy-efficient
10
  - cvpr-2025
11
  pipeline_tag: object-detection
12
- widget:
13
- - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
14
- example_title: Object Tracking Example
15
- datasets:
16
- - MOT16
17
- - MOT17
18
- - DAVIS2017
19
- - LaSOT
20
- - GOT-10k
21
- metrics:
22
- - accuracy
23
- - energy-efficiency
24
- model-index:
25
- - name: ViStream
26
- results:
27
- - task:
28
- type: object-tracking
29
- name: Multiple Object Tracking
30
- dataset:
31
- type: MOT16
32
- name: MOT16
33
- metrics:
34
- - type: MOTA
35
- value: 65.8
36
- name: Multiple Object Tracking Accuracy
37
- - task:
38
- type: object-tracking
39
- name: Single Object Tracking
40
- dataset:
41
- type: LaSOT
42
- name: LaSOT
43
- metrics:
44
- - type: Success
45
- value: 58.4
46
- name: Success Rate
47
  ---
48
 
49
  # ViStream: Law-of-Charge-Conservation Inspired Spiking Neural Network for Visual Streaming Perception
@@ -122,45 +87,18 @@ For complete usage examples, see the [GitHub repository](https://github.com/Inte
122
 
123
  ### Training Data
124
 
125
- The model was trained on multiple datasets:
126
- - **MOT datasets:** MOT16, MOT17 for multiple object tracking
127
- - **SOT datasets:** LaSOT, GOT-10k for single object tracking
128
- - **VOS datasets:** DAVIS2017 for video object segmentation
129
- - **Pose datasets:** PoseTrack for human pose tracking
130
 
131
  ### Training Procedure
132
 
133
- **Training Hyperparameters:**
134
  - Framework: PyTorch
135
- - Optimization: Energy-efficient SNN training
136
- - Architecture: ResNet-based backbone with spike quantization
137
 
138
  ## Evaluation
139
 
140
- ### Testing Data, Factors & Metrics
141
-
142
- **Datasets:**
143
- - MOT16/17 for multiple object tracking
144
- - LaSOT, GOT-10k for single object tracking
145
- - DAVIS2017 for video object segmentation
146
-
147
- **Metrics:**
148
- - **Tracking Accuracy:** MOTA, MOTP, Success Rate
149
- - **Energy Efficiency:** SOP (Synaptic Operations), Power Consumption
150
- - **Speed:** FPS, Latency
151
-
152
- ### Results
153
-
154
- | Task | Dataset | Metric | ViStream | ANN Baseline |
155
- |------|---------|--------|----------|--------------|
156
- | MOT | MOT16 | MOTA | 65.8% | 66.1% |
157
- | SOT | LaSOT | Success | 58.4% | 58.7% |
158
- | VOS | DAVIS17 | J&F | 72.3% | 72.8% |
159
-
160
- **Energy Efficiency:**
161
- - **3.2x** reduction in synaptic operations
162
- - **2.8x** improvement in energy efficiency
163
- - Minimal accuracy degradation (<1%)
164
 
165
  ## Model Card Authors
166
 
 
9
  - energy-efficient
10
  - cvpr-2025
11
  pipeline_tag: object-detection
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  # ViStream: Law-of-Charge-Conservation Inspired Spiking Neural Network for Visual Streaming Perception
 
87
 
88
  ### Training Data
89
 
90
+ The model was trained on multiple datasets for various visual streaming perception tasks including object tracking, video object segmentation, and pose tracking.
 
 
 
 
91
 
92
  ### Training Procedure
93
 
94
+ **Training Details:**
95
  - Framework: PyTorch
96
+ - Optimization: Energy-efficient SNN training with Law of Charge Conservation
97
+ - Architecture: ResNet-based backbone with spike quantization layers
98
 
99
  ## Evaluation
100
 
101
+ The model demonstrates competitive performance across multiple visual streaming perception tasks while achieving significant energy efficiency improvements compared to traditional ANN-based approaches. Detailed evaluation results are available in the [CVPR 2025 paper](https://openaccess.thecvf.com/content/CVPR2025/papers/You_VISTREAM_Improving_Computation_Efficiency_of_Visual_Streaming_Perception_via_Law-of-Charge-Conservation_CVPR_2025_paper.pdf).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
 
103
  ## Model Card Authors
104