metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1546
- loss:DualMarginContrastiveLoss
- loss:CustomBatchAllTripletLoss
widget:
- source_sentence: 科目:塗装。名称:CL塗り。
sentences:
- 科目:建具。名称:SKW-#窓+扉。
- 科目:塗装。名称:VP塗り。
- 科目:建具。名称:SSD-#窓+扉。
- source_sentence: 科目:塗装。名称:EP塗り。
sentences:
- 科目:建具。名称:HAW-#窓。
- 科目:建具。名称:SLW-#間仕切。
- 科目:塗装。名称:OS塗り。
- source_sentence: 科目:塗装。名称:FSP塗り。
sentences:
- 科目:建具。名称:SP-#間仕切。
- 科目:建具。名称:XD-#扉。
- 科目:塗装。名称:WP塗り。
- source_sentence: 科目:建具。名称:ACW-#窓。
sentences:
- 科目:建具。名称:GD-#窓+扉。
- 科目:建具。名称:GD-#用窓。
- 科目:建具。名称:WAW-#扉。
- source_sentence: 科目:建具。名称:GCW-#窓。
sentences:
- 科目:建具。名称:STW-#窓。
- 科目:建具。名称:TDW-#窓+扉。
- 科目:建具。名称:AW-#窓。
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Detomo/cl-nagoya-sup-simcse-ja-nss-v0_9_13")
# Run inference
sentences = [
'科目:建具。名称:GCW-#窓。',
'科目:建具。名称:AW-#窓。',
'科目:建具。名称:STW-#窓。',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,546 training samples
- Columns:
sentenceandlabel - Approximate statistics based on the first 1000 samples:
sentence label type string int details - min: 11 tokens
- mean: 17.07 tokens
- max: 27 tokens
- 0: ~0.30%
- 1: ~0.30%
- 2: ~0.30%
- 3: ~0.30%
- 4: ~0.30%
- 5: ~0.30%
- 6: ~0.30%
- 7: ~0.30%
- 8: ~0.30%
- 9: ~0.30%
- 10: ~0.30%
- 11: ~0.40%
- 12: ~0.30%
- 13: ~0.30%
- 14: ~0.30%
- 15: ~0.30%
- 16: ~0.30%
- 17: ~0.30%
- 18: ~0.50%
- 19: ~0.30%
- 20: ~0.30%
- 21: ~0.30%
- 22: ~0.30%
- 23: ~0.30%
- 24: ~0.30%
- 25: ~0.30%
- 26: ~0.30%
- 27: ~0.30%
- 28: ~0.30%
- 29: ~0.30%
- 30: ~0.30%
- 31: ~0.30%
- 32: ~0.30%
- 33: ~0.30%
- 34: ~0.30%
- 35: ~0.30%
- 36: ~0.30%
- 37: ~0.30%
- 38: ~0.30%
- 39: ~0.30%
- 40: ~0.40%
- 41: ~0.30%
- 42: ~0.30%
- 43: ~0.30%
- 44: ~0.60%
- 45: ~0.70%
- 46: ~0.30%
- 47: ~0.30%
- 48: ~0.30%
- 49: ~0.30%
- 50: ~0.30%
- 51: ~0.30%
- 52: ~0.30%
- 53: ~0.30%
- 54: ~0.30%
- 55: ~0.30%
- 56: ~0.30%
- 57: ~0.80%
- 58: ~0.30%
- 59: ~0.30%
- 60: ~0.30%
- 61: ~0.30%
- 62: ~0.30%
- 63: ~0.30%
- 64: ~0.30%
- 65: ~0.30%
- 66: ~0.50%
- 67: ~0.30%
- 68: ~0.30%
- 69: ~0.30%
- 70: ~0.30%
- 71: ~0.30%
- 72: ~0.60%
- 73: ~0.30%
- 74: ~0.30%
- 75: ~0.30%
- 76: ~0.30%
- 77: ~0.30%
- 78: ~0.30%
- 79: ~0.30%
- 80: ~0.30%
- 81: ~0.30%
- 82: ~0.30%
- 83: ~0.30%
- 84: ~0.30%
- 85: ~0.30%
- 86: ~0.80%
- 87: ~0.60%
- 88: ~0.50%
- 89: ~0.30%
- 90: ~0.30%
- 91: ~0.60%
- 92: ~8.00%
- 93: ~1.70%
- 94: ~0.30%
- 95: ~0.30%
- 96: ~0.60%
- 97: ~0.30%
- 98: ~0.30%
- 99: ~0.30%
- 100: ~0.30%
- 101: ~1.20%
- 102: ~0.30%
- 103: ~0.30%
- 104: ~0.30%
- 105: ~0.30%
- 106: ~0.30%
- 107: ~0.30%
- 108: ~0.30%
- 109: ~0.30%
- 110: ~0.30%
- 111: ~0.30%
- 112: ~0.30%
- 113: ~0.30%
- 114: ~0.30%
- 115: ~0.30%
- 116: ~0.30%
- 117: ~0.30%
- 118: ~0.30%
- 119: ~0.30%
- 120: ~0.30%
- 121: ~0.50%
- 122: ~0.30%
- 123: ~0.30%
- 124: ~0.30%
- 125: ~0.30%
- 126: ~0.30%
- 127: ~0.30%
- 128: ~0.30%
- 129: ~0.40%
- 130: ~0.70%
- 131: ~0.30%
- 132: ~3.10%
- 133: ~0.30%
- 134: ~2.30%
- 135: ~0.30%
- 136: ~0.30%
- 137: ~0.50%
- 138: ~0.50%
- 139: ~0.50%
- 140: ~0.30%
- 141: ~0.30%
- 142: ~0.30%
- 143: ~0.30%
- 144: ~0.80%
- 145: ~0.30%
- 146: ~0.30%
- 147: ~0.30%
- 148: ~0.30%
- 149: ~0.30%
- 150: ~0.30%
- 151: ~0.30%
- 152: ~0.30%
- 153: ~0.30%
- 154: ~0.30%
- 155: ~0.30%
- 156: ~0.30%
- 157: ~0.30%
- 158: ~0.30%
- 159: ~0.30%
- 160: ~0.30%
- 161: ~0.30%
- 162: ~0.30%
- 163: ~0.30%
- 164: ~0.30%
- 165: ~0.30%
- 166: ~0.30%
- 167: ~0.30%
- 168: ~0.60%
- 169: ~0.30%
- 170: ~0.30%
- 171: ~0.30%
- 172: ~0.30%
- 173: ~0.30%
- 174: ~0.70%
- 175: ~0.30%
- 176: ~0.30%
- 177: ~0.30%
- 178: ~1.30%
- 179: ~0.30%
- 180: ~0.30%
- 181: ~0.30%
- 182: ~0.30%
- 183: ~0.30%
- 184: ~0.30%
- 185: ~1.10%
- 186: ~0.30%
- 187: ~0.30%
- 188: ~0.30%
- 189: ~0.30%
- 190: ~0.30%
- 191: ~0.30%
- 192: ~0.30%
- 193: ~0.30%
- 194: ~1.50%
- 195: ~0.30%
- 196: ~0.30%
- 197: ~0.30%
- 198: ~0.30%
- 199: ~1.00%
- 200: ~0.30%
- 201: ~0.30%
- 202: ~0.30%
- 203: ~1.80%
- 204: ~0.30%
- 205: ~0.50%
- 206: ~0.70%
- 207: ~0.30%
- 208: ~0.30%
- 209: ~0.30%
- 210: ~0.30%
- 211: ~0.30%
- 212: ~0.30%
- 213: ~0.30%
- 214: ~0.30%
- 215: ~4.00%
- 216: ~0.30%
- 217: ~0.30%
- 218: ~0.30%
- 219: ~0.60%
- 220: ~0.30%
- 221: ~0.30%
- 222: ~0.70%
- 223: ~0.30%
- 224: ~0.30%
- 225: ~0.30%
- 226: ~0.60%
- 227: ~0.30%
- 228: ~0.10%
- Samples:
sentence label 科目:コンクリート。名称:免震基礎天端グラウト注入。0科目:コンクリート。名称:免震基礎天端グラウト注入。0科目:コンクリート。名称:免震基礎天端グラウト注入。0 - Loss:
sentence_transformer_lib.custom_batch_all_trip_loss.CustomBatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 512per_device_eval_batch_size: 512learning_rate: 1e-05weight_decay: 0.01num_train_epochs: 250warmup_ratio: 0.1fp16: Truebatch_sampler: group_by_label
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 512per_device_eval_batch_size: 512per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 250max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: group_by_labelmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 2.5 | 10 | 34.4458 |
| 5.0 | 20 | 9.5341 |
| 7.5 | 30 | 2.0511 |
| 10.0 | 40 | 1.5025 |
| 12.5 | 50 | 1.4347 |
| 15.0 | 60 | 1.1549 |
| 17.5 | 70 | 1.2308 |
| 20.0 | 80 | 1.0908 |
| 22.5 | 90 | 1.1238 |
| 25.0 | 100 | 0.9793 |
| 2.5 | 10 | 1.1269 |
| 5.0 | 20 | 0.8895 |
| 7.5 | 30 | 0.8496 |
| 10.0 | 40 | 0.6124 |
| 12.5 | 50 | 0.5591 |
| 15.0 | 60 | 0.4262 |
| 17.5 | 70 | 0.3892 |
| 20.0 | 80 | 0.3309 |
| 22.5 | 90 | 0.3195 |
| 25.0 | 100 | 0.0781 |
| 7.5455 | 200 | 0.072 |
| 11.4242 | 300 | 0.073 |
| 15.3030 | 400 | 0.0715 |
| 19.1818 | 500 | 0.069 |
| 23.0606 | 600 | 0.0682 |
| 26.7273 | 700 | 0.0659 |
| 30.6061 | 800 | 0.0628 |
| 34.4848 | 900 | 0.0618 |
| 38.3636 | 1000 | 0.0639 |
| 42.2424 | 1100 | 0.0635 |
| 46.1212 | 1200 | 0.0635 |
| 49.7879 | 1300 | 0.0627 |
| 53.6667 | 1400 | 0.0593 |
| 57.5455 | 1500 | 0.0605 |
| 61.4242 | 1600 | 0.055 |
| 65.3030 | 1700 | 0.0556 |
| 69.1818 | 1800 | 0.0589 |
| 73.0606 | 1900 | 0.0585 |
| 76.7273 | 2000 | 0.0568 |
| 80.6061 | 2100 | 0.0521 |
| 84.4848 | 2200 | 0.0559 |
| 88.3636 | 2300 | 0.0508 |
| 92.2424 | 2400 | 0.051 |
| 96.1212 | 2500 | 0.0532 |
| 99.7879 | 2600 | 0.0545 |
| 103.6667 | 2700 | 0.0532 |
| 107.5455 | 2800 | 0.0542 |
| 111.4242 | 2900 | 0.052 |
| 115.3030 | 3000 | 0.0497 |
| 119.1818 | 3100 | 0.0486 |
| 123.0606 | 3200 | 0.0562 |
| 126.7273 | 3300 | 0.0544 |
| 130.6061 | 3400 | 0.0516 |
| 134.4848 | 3500 | 0.0491 |
| 138.3636 | 3600 | 0.0578 |
| 142.2424 | 3700 | 0.0508 |
| 146.1212 | 3800 | 0.0533 |
| 149.7879 | 3900 | 0.0487 |
| 153.6667 | 4000 | 0.045 |
| 157.5455 | 4100 | 0.0454 |
| 161.4242 | 4200 | 0.0497 |
| 165.3030 | 4300 | 0.0466 |
| 169.1818 | 4400 | 0.045 |
| 173.0606 | 4500 | 0.0477 |
| 176.7273 | 4600 | 0.0421 |
| 180.6061 | 4700 | 0.051 |
| 184.4848 | 4800 | 0.0389 |
| 188.3636 | 4900 | 0.0449 |
| 192.2424 | 5000 | 0.0425 |
| 196.1212 | 5100 | 0.0456 |
| 199.7879 | 5200 | 0.0465 |
| 203.6667 | 5300 | 0.0435 |
| 207.5455 | 5400 | 0.04 |
| 211.4242 | 5500 | 0.0405 |
| 215.3030 | 5600 | 0.0432 |
| 219.1818 | 5700 | 0.0394 |
| 223.0606 | 5800 | 0.0511 |
| 226.7273 | 5900 | 0.0462 |
| 230.6061 | 6000 | 0.0397 |
| 234.4848 | 6100 | 0.0413 |
| 238.3636 | 6200 | 0.0443 |
| 242.2424 | 6300 | 0.0377 |
| 246.1212 | 6400 | 0.0437 |
| 249.7879 | 6500 | 0.0407 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CustomBatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}