sd-panelization-v2 / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
ba4a70a
|
raw
history blame
1.98 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - source_data_nlp
metrics:
  - precision
  - recall
  - f1
base_model: michiyasunaga/BioLinkBERT-large
model-index:
  - name: sd-panelization-v2
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: source_data_nlp
          type: source_data_nlp
          args: PANELIZATION
        metrics:
          - type: precision
            value: 0.9134245120169964
            name: Precision
          - type: recall
            value: 0.9494824016563147
            name: Recall
          - type: f1
            value: 0.9311044937736871
            name: F1

sd-panelization-v2

This model is a fine-tuned version of michiyasunaga/BioLinkBERT-large on the source_data_nlp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0050
  • Accuracy Score: 0.9982
  • Precision: 0.9134
  • Recall: 0.9495
  • F1: 0.9311

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adafactor
  • lr_scheduler_type: linear
  • num_epochs: 1.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Score Precision Recall F1
0.0048 1.0 431 0.0050 0.9982 0.9134 0.9495 0.9311

Framework versions

  • Transformers 4.20.0
  • Pytorch 1.11.0a0+bfe5ad2
  • Datasets 1.17.0
  • Tokenizers 0.12.1