CeLLaTe-tapt_ulmfit_dropout_whole_word-LR_1e-06
This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2115
- Accuracy: 0.7384
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 3407
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.417 | 1.0 | 21 | 1.3054 | 0.7242 |
| 1.4427 | 2.0 | 42 | 1.2771 | 0.7220 |
| 1.4372 | 3.0 | 63 | 1.2604 | 0.7231 |
| 1.4313 | 4.0 | 84 | 1.2655 | 0.7309 |
| 1.4279 | 5.0 | 105 | 1.2783 | 0.7278 |
| 1.4423 | 6.0 | 126 | 1.2915 | 0.7240 |
| 1.3965 | 7.0 | 147 | 1.2815 | 0.7287 |
| 1.4224 | 8.0 | 168 | 1.2791 | 0.7277 |
| 1.4191 | 9.0 | 189 | 1.2835 | 0.7270 |
| 1.4469 | 10.0 | 210 | 1.2283 | 0.7312 |
| 1.4211 | 11.0 | 231 | 1.2734 | 0.7269 |
| 1.4104 | 12.0 | 252 | 1.2595 | 0.7279 |
| 1.4034 | 13.0 | 273 | 1.3035 | 0.7225 |
| 1.4017 | 14.0 | 294 | 1.2485 | 0.7315 |
| 1.424 | 15.0 | 315 | 1.2264 | 0.7400 |
| 1.43 | 16.0 | 336 | 1.2705 | 0.7272 |
| 1.4092 | 17.0 | 357 | 1.2663 | 0.7302 |
| 1.3956 | 18.0 | 378 | 1.2395 | 0.7315 |
| 1.3756 | 19.0 | 399 | 1.2697 | 0.7264 |
| 1.4096 | 20.0 | 420 | 1.2773 | 0.7276 |
| 1.3797 | 21.0 | 441 | 1.2720 | 0.7324 |
| 1.4215 | 22.0 | 462 | 1.2762 | 0.7312 |
| 1.3908 | 23.0 | 483 | 1.2269 | 0.7320 |
| 1.3587 | 24.0 | 504 | 1.2476 | 0.7333 |
| 1.3807 | 25.0 | 525 | 1.2124 | 0.7350 |
| 1.3917 | 26.0 | 546 | 1.2850 | 0.7261 |
| 1.4013 | 27.0 | 567 | 1.2109 | 0.7440 |
| 1.4236 | 28.0 | 588 | 1.2679 | 0.7312 |
| 1.3988 | 29.0 | 609 | 1.2919 | 0.7282 |
| 1.3988 | 30.0 | 630 | 1.2626 | 0.7327 |
| 1.3863 | 31.0 | 651 | 1.3055 | 0.7246 |
| 1.4063 | 32.0 | 672 | 1.2723 | 0.7307 |
| 1.3824 | 33.0 | 693 | 1.2363 | 0.7335 |
| 1.4027 | 34.0 | 714 | 1.2655 | 0.7313 |
| 1.3938 | 35.0 | 735 | 1.2437 | 0.7329 |
| 1.378 | 36.0 | 756 | 1.2797 | 0.7266 |
| 1.3678 | 37.0 | 777 | 1.2608 | 0.7280 |
| 1.389 | 38.0 | 798 | 1.2706 | 0.7294 |
| 1.4134 | 39.0 | 819 | 1.2581 | 0.7290 |
| 1.3866 | 40.0 | 840 | 1.2719 | 0.7294 |
| 1.378 | 41.0 | 861 | 1.2304 | 0.7350 |
| 1.3844 | 42.0 | 882 | 1.2708 | 0.7277 |
| 1.3749 | 43.0 | 903 | 1.2824 | 0.7266 |
| 1.4224 | 44.0 | 924 | 1.2357 | 0.7339 |
| 1.3705 | 45.0 | 945 | 1.2464 | 0.7342 |
| 1.3521 | 46.0 | 966 | 1.2224 | 0.7324 |
| 1.3956 | 47.0 | 987 | 1.2440 | 0.7358 |
| 1.3941 | 48.0 | 1008 | 1.2374 | 0.7359 |
| 1.3796 | 49.0 | 1029 | 1.2603 | 0.7293 |
| 1.3945 | 50.0 | 1050 | 1.2365 | 0.7353 |
| 1.3874 | 51.0 | 1071 | 1.2675 | 0.7275 |
| 1.385 | 52.0 | 1092 | 1.2642 | 0.7328 |
| 1.3787 | 53.0 | 1113 | 1.3000 | 0.7241 |
| 1.3585 | 54.0 | 1134 | 1.2610 | 0.7331 |
| 1.379 | 55.0 | 1155 | 1.2489 | 0.7302 |
| 1.3917 | 56.0 | 1176 | 1.2527 | 0.7306 |
| 1.3847 | 57.0 | 1197 | 1.2648 | 0.7325 |
| 1.4298 | 58.0 | 1218 | 1.2781 | 0.7289 |
| 1.3857 | 59.0 | 1239 | 1.2128 | 0.7406 |
| 1.3954 | 60.0 | 1260 | 1.2630 | 0.7280 |
| 1.3726 | 61.0 | 1281 | 1.2678 | 0.7317 |
| 1.3955 | 62.0 | 1302 | 1.2821 | 0.7316 |
| 1.3881 | 63.0 | 1323 | 1.2372 | 0.7377 |
| 1.3775 | 64.0 | 1344 | 1.2855 | 0.7280 |
| 1.3985 | 65.0 | 1365 | 1.2628 | 0.7302 |
| 1.3641 | 66.0 | 1386 | 1.2816 | 0.7269 |
| 1.4088 | 67.0 | 1407 | 1.2770 | 0.7269 |
| 1.3488 | 68.0 | 1428 | 1.2758 | 0.7223 |
| 1.34 | 69.0 | 1449 | 1.2518 | 0.7284 |
| 1.3589 | 70.0 | 1470 | 1.2115 | 0.7341 |
| 1.3732 | 71.0 | 1491 | 1.2959 | 0.7261 |
| 1.3846 | 72.0 | 1512 | 1.2925 | 0.7275 |
| 1.3888 | 73.0 | 1533 | 1.2442 | 0.7337 |
| 1.368 | 74.0 | 1554 | 1.2889 | 0.7292 |
| 1.3676 | 75.0 | 1575 | 1.1854 | 0.7444 |
| 1.3577 | 76.0 | 1596 | 1.2998 | 0.7287 |
| 1.3621 | 77.0 | 1617 | 1.2169 | 0.7372 |
| 1.387 | 78.0 | 1638 | 1.2295 | 0.7333 |
| 1.3618 | 79.0 | 1659 | 1.2466 | 0.7363 |
| 1.3864 | 80.0 | 1680 | 1.2806 | 0.7290 |
| 1.371 | 81.0 | 1701 | 1.2339 | 0.7342 |
| 1.3785 | 82.0 | 1722 | 1.2343 | 0.7330 |
| 1.3636 | 83.0 | 1743 | 1.2524 | 0.7312 |
| 1.3936 | 84.0 | 1764 | 1.2523 | 0.7316 |
| 1.3771 | 85.0 | 1785 | 1.2627 | 0.7277 |
| 1.3557 | 86.0 | 1806 | 1.2166 | 0.7362 |
| 1.3803 | 87.0 | 1827 | 1.2356 | 0.7362 |
| 1.3954 | 88.0 | 1848 | 1.2200 | 0.7394 |
| 1.3642 | 89.0 | 1869 | 1.2566 | 0.7294 |
| 1.3681 | 90.0 | 1890 | 1.2196 | 0.7394 |
| 1.3699 | 91.0 | 1911 | 1.2475 | 0.7311 |
| 1.3568 | 92.0 | 1932 | 1.1959 | 0.7394 |
| 1.3609 | 93.0 | 1953 | 1.2606 | 0.7330 |
| 1.3858 | 94.0 | 1974 | 1.2737 | 0.7283 |
| 1.3874 | 95.0 | 1995 | 1.2670 | 0.7307 |
| 1.3781 | 96.0 | 2016 | 1.2187 | 0.7357 |
| 1.3826 | 97.0 | 2037 | 1.2555 | 0.7310 |
| 1.3553 | 98.0 | 2058 | 1.2408 | 0.7334 |
| 1.3586 | 99.0 | 2079 | 1.2193 | 0.7379 |
| 1.3705 | 100.0 | 2100 | 1.2115 | 0.7384 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.21.0
- Downloads last month
- 7