CeLLaTe-tapt_ulmfit_dropout_whole_word-LR_1e-06

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2115
  • Accuracy: 0.7384

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 3407
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.417 1.0 21 1.3054 0.7242
1.4427 2.0 42 1.2771 0.7220
1.4372 3.0 63 1.2604 0.7231
1.4313 4.0 84 1.2655 0.7309
1.4279 5.0 105 1.2783 0.7278
1.4423 6.0 126 1.2915 0.7240
1.3965 7.0 147 1.2815 0.7287
1.4224 8.0 168 1.2791 0.7277
1.4191 9.0 189 1.2835 0.7270
1.4469 10.0 210 1.2283 0.7312
1.4211 11.0 231 1.2734 0.7269
1.4104 12.0 252 1.2595 0.7279
1.4034 13.0 273 1.3035 0.7225
1.4017 14.0 294 1.2485 0.7315
1.424 15.0 315 1.2264 0.7400
1.43 16.0 336 1.2705 0.7272
1.4092 17.0 357 1.2663 0.7302
1.3956 18.0 378 1.2395 0.7315
1.3756 19.0 399 1.2697 0.7264
1.4096 20.0 420 1.2773 0.7276
1.3797 21.0 441 1.2720 0.7324
1.4215 22.0 462 1.2762 0.7312
1.3908 23.0 483 1.2269 0.7320
1.3587 24.0 504 1.2476 0.7333
1.3807 25.0 525 1.2124 0.7350
1.3917 26.0 546 1.2850 0.7261
1.4013 27.0 567 1.2109 0.7440
1.4236 28.0 588 1.2679 0.7312
1.3988 29.0 609 1.2919 0.7282
1.3988 30.0 630 1.2626 0.7327
1.3863 31.0 651 1.3055 0.7246
1.4063 32.0 672 1.2723 0.7307
1.3824 33.0 693 1.2363 0.7335
1.4027 34.0 714 1.2655 0.7313
1.3938 35.0 735 1.2437 0.7329
1.378 36.0 756 1.2797 0.7266
1.3678 37.0 777 1.2608 0.7280
1.389 38.0 798 1.2706 0.7294
1.4134 39.0 819 1.2581 0.7290
1.3866 40.0 840 1.2719 0.7294
1.378 41.0 861 1.2304 0.7350
1.3844 42.0 882 1.2708 0.7277
1.3749 43.0 903 1.2824 0.7266
1.4224 44.0 924 1.2357 0.7339
1.3705 45.0 945 1.2464 0.7342
1.3521 46.0 966 1.2224 0.7324
1.3956 47.0 987 1.2440 0.7358
1.3941 48.0 1008 1.2374 0.7359
1.3796 49.0 1029 1.2603 0.7293
1.3945 50.0 1050 1.2365 0.7353
1.3874 51.0 1071 1.2675 0.7275
1.385 52.0 1092 1.2642 0.7328
1.3787 53.0 1113 1.3000 0.7241
1.3585 54.0 1134 1.2610 0.7331
1.379 55.0 1155 1.2489 0.7302
1.3917 56.0 1176 1.2527 0.7306
1.3847 57.0 1197 1.2648 0.7325
1.4298 58.0 1218 1.2781 0.7289
1.3857 59.0 1239 1.2128 0.7406
1.3954 60.0 1260 1.2630 0.7280
1.3726 61.0 1281 1.2678 0.7317
1.3955 62.0 1302 1.2821 0.7316
1.3881 63.0 1323 1.2372 0.7377
1.3775 64.0 1344 1.2855 0.7280
1.3985 65.0 1365 1.2628 0.7302
1.3641 66.0 1386 1.2816 0.7269
1.4088 67.0 1407 1.2770 0.7269
1.3488 68.0 1428 1.2758 0.7223
1.34 69.0 1449 1.2518 0.7284
1.3589 70.0 1470 1.2115 0.7341
1.3732 71.0 1491 1.2959 0.7261
1.3846 72.0 1512 1.2925 0.7275
1.3888 73.0 1533 1.2442 0.7337
1.368 74.0 1554 1.2889 0.7292
1.3676 75.0 1575 1.1854 0.7444
1.3577 76.0 1596 1.2998 0.7287
1.3621 77.0 1617 1.2169 0.7372
1.387 78.0 1638 1.2295 0.7333
1.3618 79.0 1659 1.2466 0.7363
1.3864 80.0 1680 1.2806 0.7290
1.371 81.0 1701 1.2339 0.7342
1.3785 82.0 1722 1.2343 0.7330
1.3636 83.0 1743 1.2524 0.7312
1.3936 84.0 1764 1.2523 0.7316
1.3771 85.0 1785 1.2627 0.7277
1.3557 86.0 1806 1.2166 0.7362
1.3803 87.0 1827 1.2356 0.7362
1.3954 88.0 1848 1.2200 0.7394
1.3642 89.0 1869 1.2566 0.7294
1.3681 90.0 1890 1.2196 0.7394
1.3699 91.0 1911 1.2475 0.7311
1.3568 92.0 1932 1.1959 0.7394
1.3609 93.0 1953 1.2606 0.7330
1.3858 94.0 1974 1.2737 0.7283
1.3874 95.0 1995 1.2670 0.7307
1.3781 96.0 2016 1.2187 0.7357
1.3826 97.0 2037 1.2555 0.7310
1.3553 98.0 2058 1.2408 0.7334
1.3586 99.0 2079 1.2193 0.7379
1.3705 100.0 2100 1.2115 0.7384

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.21.0
Downloads last month
7
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Mardiyyah/CeLLaTe-tapt_ulmfit_dropout_whole_word-LR_1e-06